
1

Improved EGT-based Robustness Analysis of

Negotiation Strategies in Multi-agent Systems via

Model Checking

Songzheng Song∗, Jianye Hao‡¶, Yang Liu∗, Jun Sun‡, Ho-Fung Leung† and Jie Zhang∗

∗Nanyang Technological University Email: {songsz, yangliu, zhangj}@ntu.edu.sg
†The Chinese University of Hong Kong Email: lhf@cse.cuhk.edu.hk

‡Singapore University of Technology and Design Email: {jianye hao,sunjun}@sutd.edu.sg

Abstract—Automated negotiations play an important role in
various domains modeled as multi-agent systems where agents
represent human users and adopt different negotiation strategies.
Generally, given a multi-agent system, a negotiation strategy
should be robust in the sense that most agents in the system
have the incentive to choose it rather than other strategies.
Empirical Game Theoretic (EGT) analysis is a game-theoretic
analysis approach to investigate the robustness of different
strategies based on a set of empirical results. In this work,
we propose that model checking techniques can be adopted to
improve EGT analysis for negotiation strategies. The dynamics
of strategy profiles can be modeled as a Labeled Transition
System using the counter abstraction technique. We define
single-agent best deviation to represent the strategy deviations
during negotiation, which focuses on each agent’s best deviation
benefit and is different from best single-agent deviation used
in previous work. Two interesting properties in EGT analysis,
empirical pure strategy Nash equilibrium and best reply cycle, are
automatically verified to investigate the robustness of different
strategies. For demonstration, the top six strategies from the
Automated Negotiating Agents Competition (ANAC) 2010-2012
are studied in terms of their robustness performance. In addition
to identifying the most robust strategies, we supply complete
rankings among them in different settings. We show that model
checking is applicable and efficient to perform robustness analysis
of negotiation strategies.

Index Terms—Automated Negotiation; Robustness Analysis;
Empirical Game Theory; Model Checking;

I. INTRODUCTION

Negotiations exist in many aspects of our daily life for

resolving conflicts among different parties. In multi-agent

systems, automated negotiation techniques can facilitate better

negotiation outcomes by supporting humans when they are

faced with complex negotiations. Several automated negoti-

ation strategies have been proposed in different negotiation

scenarios [11], [17], [28].

The most commonly adopted criterion for evaluating a

negotiation strategy is its efficiency, i.e., the average payoff it

can obtain under different negotiation scenarios against other

negotiation strategies. One example is the annual automated

negotiating agents competition (ANAC) [1], [2] which provides

a general platform enabling different negotiation agents to

be evaluated against a range of opponents under various

¶ Corresponding author

realistic negotiation environments. The efficiency criterion in

the competition corresponds to the expected payoff under the

competition tournament over all participating agents averaged

over all negotiation domains. However, the efficiency criterion

does not address the robustness of the negotiation strategies

in different negotiation scenarios, since it assumes that each

agent’s strategy is fixed (determined by its designer(s)) once

it enters the competition. In practice, agents are free to choose

any negotiation strategy available to them (e.g., from the

public strategies developed in the ANAC). Besides, the human

negotiators are able to observe their opponents’ negotiation

strategies, and may change strategies at any negotiation stage

to improve their personal benefits. Given a strategy s, it is

important to investigate whether a (human) negotiator adopting

s has the incentive to unilaterally deviate to other available

strategies under a particular negotiation tournament. Similarly,

we may ask whether any (human) negotiator adopting other

strategies is willing to switch to s under certain important

negotiation domains. Because of its importance, the robustness

criterion has been given attention [1], [35]. The essence of

the robustness analysis is to apply game-theoretic analysis

to investigate the dynamics of strategy changes of (rational)

human negotiators during negotiation when they interact with

different opponents.

However, the robustness of different negotiation strategies

cannot be analyzed by applying standard game-theoretic ap-

proaches as there are an infinite number of possible negotiation

strategies. One suitable approach is to adopt empirical game

theoretic (EGT) analysis [1], [23], [35] which assumes that

each agent only selects its strategy from a fixed set of

strategies. Given a negotiation tournament consisting of n

agents, each agent chooses one particular strategy from the set

S of strategies, and this jointly constitutes a strategy profile.

The outcomes for each strategy profile can be determined

through simulation. However, the robustness analysis approach

based on the EGT has two drawbacks. First, it assumes best

single-agent deviation, i.e., only one agent with the largest

payoff increase is allowed to change its strategy. In practice,

each negotiating agent may change its strategy as long as its

own benefit can be increased. Allowing all agents to update

their strategies rationally can provide a more realistic analysis.

Second, manual deviation analysis is highly nontrivial when

2

the number of agents/strategies is large since the number of

strategy profiles increases exponentially with the number of

agents/strategies.

Applying model checking [3], [10] for EGT analysis could

be useful if the following challenges can be addressed:

• Accurate formal models are needed to represent the de-

viations of strategy profiles. Our assumption of allowing

all agents to update their strategies in one strategy profile

may significantly increase the analysis complexity.

• Dedicated model checking algorithms are needed for

robustness analysis, since no such algorithms exist.

• The existence of multiple agents and strategies in the

system can easily result in the state space explosion

problem, which makes the verification infeasible, so an

appropriate state space reduction technique is required.

In this work, we tackle the above challenges. First, we

use the model checker PAT [29], which supports external

libraries of imperative programming languages such as Java

and C#, to model the complex dynamics of agents’ possible

strategy deviations during negotiations. Second, corresponding

model checking algorithms are developed to exactly cover the

properties needed for the robustness analysis. Third, we apply

the counter abstraction technique [25] to reduce the state space

of the models due to the symmetric property of negotiation

problems. We apply the model checking approach to analyze

the robustness of the top-eight strategies from ANAC 2012 and

show that our approach can facilitate the robustness analysis

process.

Compared with [1], [35], our contributions are fourfold:

1) We define the deviations of each strategy profiles based

on each agent’s benefits, which is more realistic than

the definition of deviation used in [1] since each agent

has its own incentive to get a better payoff, which is

independent on other agents’ interests.

2) We propose and apply a model checking approach to im-

prove the robustness analysis via EGT, and generate the

robustness ranking of different strategies. This approach

could advance the strategy analysis and development for

automated negotiation.

3) We apply the counter abstraction technique to reduce

the model’s state space due to the symmetric property

existing in the negotiation, thus making analysis using

model checking techniques feasible and efficient.

4) We have implemented the dedicated verification algo-

rithms in PAT. We show the robustness of the state-of-

the-art negotiation strategies, and rankings among them

are given under different settings.

The paper is structured as follows. Section II surveys related

work. Section III presents background. Section IV introduces

the details of how to apply model checking to analyze the

robustness of different negotiation strategies. An evaluation is

reported in Section V and Section VI concludes the paper.

II. RELATED WORK

We first review the application of model checking tech-

niques to verify properties in multiagent systems.

Tadjouddine et al. [31] investigate the problem of auto-

matically verifying the game-theoretic property of strategy-

proofness for auction protocols. They consider the case of the

Vickrey auction protocol and check the property of strategy-

proofness using the model checker SPIN [20]. To solve the

state space explosion problem, they apply two types of abstrac-

tion approaches: program slicing and abstract interpretation.

Program slicing removes portions in the model irrelevant with

respect to the property checked. Abstract interpretation maps

the original strategy domain onto an abstract and less complex

domain, and then performs model checking on the abstract

model. By using these two methods, the authors show that

strategy-proofness of a Vickrey auction can be automatically

verified for any number of players.

Ballarini et al. [4] apply probabilistic model checking to

automatically analyse the uncertainty existing in a two-agent

negotiation game. In the game, one seller and one buyer bar-

gain over a single item, and both players exhibit probabilistic

behaviors based on the opponent’s previous behavior. They

model the dynamics of the two-player system as a discrete-

time Markov chain (DTMC). They illustrate how to use the

probabilistic model checker PRISM [18] to automatically

analyse the probability that the players reach an agreement

within each round of the game by specifying this property in

probabilistic computation tree logic (PCTL) [13].

Hao et al. [15] apply probabilistic model checking tech-

niques to analyze stochastic dynamics among multiple learn-

ers. They focus on two strategies: basic simple strategy

(BSS) and extended simple strategies (ESS), in the context

of dispersion games. The system dynamics are modeled using

DTMC and they propose to reduce models’ state space by

applying the counter abstraction technique. Two properties of

the systems are considered: convergence and convergence rate.

They show that these properties can be automatically verified

using probabilistic model checking techniques.

Bordini et al. [5] review the problem of verifying multi-

agent systems implemented in the language AgentSpeak using

model checking techniques. They aim to automatically ver-

ify whether certain specifications are satisfied using existing

model checkers. For this purpose, the original multi-agent

system implemented in a BDI language AgentSpeak [27] is

transformed into the formal language supported by current

model checkers. They introduce a variant of the language

AgentSpeak, AgentSpeak(F), which can be automatically

transformed into Promela, the model specification language

of SPIN [20]. They adopt a simplified form of BDI logic to

specify the properties to be checked, which can be transformed

into linear temporal logic (LTL), supported by existing model

checkers. With the combination of these two techniques, the

properties of a multi-agent system implemented in AgentSpeak

can be automatically checked with existing model checkers.

[36] transforms other agent-based languages such as Mable

[36] into Promela and uses SPIN to perform model checking.

Several model checking approaches [9], [12], [24], [33]

have been proposed to analyze different types of games and

characterize their corresponding solution concepts. Góngora

and Rosenblueth [12] propose a discrete-time Markov chain

codification of a finite strategic game and an extension of

3

probabilistic Computational-Tree Logic (PCTL) to quantify

the expected cost. They characterize mixed strategy Nash

equilibrium in finite strategic games. Mari et al. [24] propose

two ordered binary design diagram (OBDD) based model

checking algorithms for verifying Coalition Nash equilibrium

and apply them to multiple administrative domains distributed

systems. Vasconcelos and Haveusler [33] propose a first-order

CTL based logic, Game Analysis Logic (GAL) to reason about

extensive-form games with perfect information. They also

develop a GAL-based model checker to compute the solution

concept of Nash equilibrium and subgame perfect equilibrium.

Chen et al. [9] develop a model checker, PRISM-games for

stochastic games, based on the probabilistic model checker-

PRISM. In PRISM-games, stochastic games are modeled in a

probabilistic extension of the Reactive Module Language and

the properties are specified in an extension of the well-known

logic ATL. This model checker supports verifying properties in

stochastic games and automatic synthesis of optimal strategies.

In this work, we apply a model checking approach to pro-

vide automatic analysis of the robustness of different negotia-

tion strategies. First, apart from checking empirical pure strat-

egy Nash equilibrium, analyzing robustness of strategies relies

on checking best reply cycle and basin of attraction, which

are different from analyzing traditional solution concepts such

as Nash equilibrium. Second, the modeling of deviation of

negotiation strategies involves complex real number operations

and loops. Under the support of the external libraries based on

the C# language, both complex real number operations and

loops, not supported in other model checkers such as SPIN

and PRISM, can be modeled using PAT.

III. BACKGROUND

In this section, we recall some basic concepts and back-

ground used throughout the rest of the paper.

A. Negotiation Model

The ANAC is the annual competition which brings together

researchers from the automated negotiation community [1],

[2]. Following the settings adopted in ANAC, the basic

negotiation form is bilateral negotiation, i.e., negotiations

between two agents. The alternating-offers protocol is adopted

to regulate the interactions between the negotiating agents, in

which the agents take turns to exchange proposals. For each

negotiation scenario, both agents can negotiate over multiple

issues (items), and each item can have a number of different

values. Let us denote the set of items as M, and the set of

values for each item mi ∈ M as Vi.
1 We define a negotiation

outcome ω as a mapping from every item mi ∈ M to a value

v ∈ Vi, and the negotiation domain is defined as the set Ω of all

possible negotiation outcomes. For each negotiation outcome

ω, we use ω(mi) to denote the corresponding value of the

item mi in the negotiation outcome ω. It is assumed that the

knowledge of the negotiation domain is known to both agents

beforehand, and is not changed during the whole negotiation

session.

For each negotiation outcome ω, different agents may

have different preferences. Each agent i’s preference can be

modeled by a utility function ui such that ∀ω ∈ Ω, it is

mapped into a real-valued number in the range of [0,1],

i.e., ui(ω) ∈ [0, 1]. In practice, it is usually associated with

certain cost in each negotiation. To account for cost, a real-

time deadline is imposed on the negotiation process and

each agent’s actual utilities over the negotiation outcomes

are decreased by a discounting factor δ over time. In the

ANAC, each negotiation session is allocated 3 minutes, which

is normalized into the range of [0,1], i.e., 0 ≤ t ≤ 1. Formally,

if an agreement is reached at time t before the deadline, each

agent i’s actual utility function Ut
i(ω) over this mutually agreed

negotiation outcome ω is defined as follows:

Ut
i(ω) = ui(ω)δ

t (1)

If no agreement is reached by the deadline, each agent i will

obtain a utility of ru0
i δ, where ru0

i is agent i’s private reser-

vation value in the negotiation scenario. The agents will also

obtain their corresponding reservation values if the negotiation

is terminated before the deadline. Note that the agents’ actual

utilities over their reservation values are also discounted by the

discounting factor δ over time t. We assume that the agents’

preference information and their reservation values are private

and cannot be accessed by their negotiating partners.

For example, consider a negotiation between the representa-

tives from two companies (A and B) where company A wants

to acquire company B. The companies negotiate five items:

the price that company A pays to company B, the transfer

of any intellectual property from B to A, any stock given

to the founders in B, the terms of the employees’ contract

and the legal liability company A has to take. For each issue,

there are a number of options available for both companies,

and different companies may have different preferences for

different options. For example, company A prefers to pay the

minimum amount of money and stock to acquire company

B, while B prefers the acquisition price to be as high as

possible and a higher percentage of stock. For the issue

of legal liability, both sides prefer the least legal liability.

Any possible combination of the options for each issue can

be considered as a proposal that any company can propose

during the negotiation. One specific proposal could be that

company A proposes to pay $100,000.00 and give 5% of the

stock to company B’s founders, all intellectual property must

be transferred to company A, the employees should have a

15% salary increase in the contract, and company A assumes

all legal liabilities. Different companies might put different

weights on different issues when they evaluate the outcomes,

which are formally reflected in their utility functions.

The interaction between the negotiation agents is regulated

by the alternating-offers protocol, in which the agents are

allowed to take turns to exchange proposals. During each

encounter, if it is agent i’s turn to make a proposal, it can

make a choice from the following three options:

• Accept the offer from its negotiating partner: In this case,

the negotiation ends and an agreement is reached. Both

agents will obtain the corresponding utilities according to

Equation 1, where ω is the negotiation outcome to which

they mutually agree.

4

• Reject and propose a counter-offer to its negotiating

partner: In this case, the negotiation process continues

and it is its negotiating partner’s turn to make a counter-

proposal provided that the deadline has not passed.

• Terminate the negotiation: In this case, the negotiation

terminates and each agent i gets its corresponding utility

based on its private reservation value with the initial

value of ru0
i . Note that their actual utilities are also

decreased over time by the same discounting factor δ,

i.e., Ut
i = ru0

i ∗δ
t. The reservation value may be different

for different negotiation parties and may vary in different

negotiation domains.

The negotiation process terminates when any of the following

conditions is satisfied: 1) the deadline is reached (End); 2)

an agent chooses to terminate the negotiation before reaching

deadline (Terminate); 3) an agent chooses to accept the nego-

tiation outcome proposed by its negotiating partner (Accept).

B. Robustness Analysis using Empirical Game Theoretic Ap-

proach

Under the ANAC, the winner is the agent who receives the

highest average payoffs in the specific competition tournament

where each participation agent adopts a different strategy

designed by different parties. According to the ANAC rule,

once entering the competition, each agent’s strategy cannot

be changed during the tournaments, and the agents do not

have the learning capability to adjust their negotiating strategy

based on previous negotiations (each pairwise negotiation is a

new start). However, in practice, agents are free to choose

any strategy available, and it is important to analyze the

robustness of different strategies. For example, it is interesting

to investigate which strategy most agents would have the

incentive to adopt if the agents are free to choose any strategy.

In robustness analysis of negotiation strategies, the standard

game-theoretic approach is not applicable because it explicitly

considers all possible strategies and there are an infinite

number to consider. Empirical Game Theoretic (EGT) analysis

[23] is a game-theoretic analysis approach based on a set of

empirical results and can be used to investigate the robustness

of the strategies. EGT assumes that each agent only selects its

strategy from a fixed set of strategies and the outcomes for

each strategy profile can be determined through simulation.

This technique has been successfully applied in addressing

questions about robustness of different strategies in previous

years’ trading agent competitions [23] and negotiation strate-

gies in ANAC 2011 [1].

In EGT analysis, a fixed set of negotiation strategies, S, is

given. Each agent can select any strategy from S as its nego-

tiation strategy. For each bilateral negotiation (p, p′), the cor-

responding payoff Up(p, p′) received by agent p is determined

as its average payoff over all possible domains against its

current opponent p′, which can be obtained through empirical

simulation (available from the ANAC website). The average

payoff of an agent in any given tournament is determined

by averaging its payoff obtained in all bilateral negotiations

against all other agents in the tournament. Specifically, for

a given tournament involving a set P of agents, the payoff

Up(P) obtained by agent p can be calculated as follows:

Up(P) =

∑

p′∈P,p′ 6=p Up(p, p′)

| P | −1
(2)

where Up(p, p′) represents the corresponding average payoff of

agent p in the bilateral negotiation against agent p′. Note that

agent p and p′ can use either the same or different strategies.

Based on Equation 2, we can determine the corresponding

payoff profile for any given tournament. For each agent, there

may exist multiple candidate strategies that it has the incentive

to deviate to (i.e., multiple single-agent deviations exist for one

agent), but here we only consider the best deviation available

to that agent in terms of maximizing its deviation benefit,

which is called single-agent best deviation. Our definition is

different from best single-agent deviation defined in [1]. In

[1], among all agents, only the one obtaining the largest payoff

increase can deviate to another strategy, which is not realistic

when all agents have the incentive to receive a larger payoff

via updating their strategies. Therefore, one strategy profile

in our setting can have multiple single-agent best deviations

enabled, each of which corresponds to a unique agent.

Given a strategy profile under a negotiation tournament,

if no agent has the incentive to unilaterally deviate from its

current strategy, then this strategy profile is called an empirical

pure strategy Nash equilibrium2. It is also possible for the

agents to adopt mixed strategies and thus we can define

the concept of empirical mixed strategy Nash equilibrium

accordingly. However, in practice people are risk-averse and

may like to be represented by a strategy with predictable

behaviors instead of a probabilistic one [26]. Therefore we

only consider empirical pure strategy Nash equilibria in our

analysis following [1]. It is possible that a game may have no

empirical pure strategy Nash equilibrium.

Another useful concept for analyzing the stability of the

strategy profiles is best reply cycle [37], which is a subset

of strategy profiles. Since we allow that one strategy profile

can have multiple outgoing transitions, our best reply cycle

is a subset of strategy profiles which are strongly connected

instead of just a cycle. For any strategy profile within this

subset, there is no single-agent best deviation path leading to

any profile outside this subset. In a best reply cycle, all single-

agent best deviation paths starting from any strategy profile

within itself must lead to another strategy profile inside the

cycle, and there must exist paths between any two strategy

profiles in this subset.

Both empirical pure strategy Nash equilibrium and best

reply cycle can be considered as two different interpretations

of empirical stable sets to evaluate the stability of different

strategy profiles. We evaluate the robustness of a strategy using

the concept of basin of attraction of a stable set [34]. The basin

of attraction of a stable set is the percentage of strategy profiles

which can lead to this stable set through a series of single-

agent best deviations. A negotiation strategy s is considered

to be robust if it belongs to a stable set with a large basin

of attraction [1], [34]. In other words, if there exists a large

proportion of initial strategy profiles which, through a series

of single-agent best deviations, can eventually lead to a stable

set containing strategy s, then strategy s is highly robust in the

5

s0start s1 s2 s5

s3 s4

a

τ

b

τ

a a

b

c

c

Fig. 1. Example: LTS L

long run, since the strategy s can always have the opportunity

of being adopted eventually if the tournament is sufficiently

repeated due to single-agent best deviations.

In summary, we apply the EGT analysis to identify both

empirical pure strategy Nash equilibrium and best reply cycle

and evaluate the robustness of negotiation strategies via the

concept of basin of attraction.

C. PAT

The model checker we use is PAT, [21], [22], [29], a

stand-alone model checking framework, which has a user-

friendly editor, simulator and verifier. It is implemented in

C# and supports various operating systems such as Windows,

Linux and Mac OS. The modeling language of PAT is called

CSP# [30], which can be used to capture the deviations be-

tween strategy profiles in negotiations. CSP# is based on Tony

Hoare’s CSP [19], and it combines low-level programs, e.g.,

sequence programs defined in a simple imperative language or

any imported libraries3 of imperative programming languages

such as Java and C#, with high-level specifications. It supports

shared variables as well as abstract events, making it both

state-based and event-based. The semantic model of CSP# is

Labeled Transition Systems (LTS), whose formal definition is

as follows.

Definition 1: A Labeled Transition System L is a tuple

(S, init,Act, T,AP, L) where S is a finite set of states; and

init ∈ S is an initial state;4 Act is an alphabet; T ⊆ S×Act×S is

a labeled transition relation; AP is a set of atomic propositions

and L: S → 2AP is a labeling function.

A set of states C ⊆ S is called connected in L iff ∀ s, s′ ∈ C,

there is a finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s ∧
sn = s′ ∧ ∀ i ∈ [0, n], si ∈ C. Strongly Connected Components

(SCCs) are those maximal sets of states which are mutually

connected. An SCC is called trivial if it just has one state

without a self-loop. An SCC is nontrivial iff it is not trivial.

If an SCC does not have outgoing transitions to states outside

it, it is called bottom SCC (BSCC). Note that one state can

only be in one SCC. In other words, SCCs are disjoint.

A simple LTS L is shown in Fig. 1. τ indicates invisible

events in the system. In this figure, S = {s0, s1, s2, s3, s4, s5},

and s0 is the initial state. Act = {a, b, c} and T is denoted in the

figure. For example, (s1, τ, s2) ∈ T, meanwhile (s2, b, s1) ∈ T.

There are three nontrivial SCCs: {s1, s2, s3}, {s4} and {s5},

and the latter two are BSCCs.

Based on the semantic model, PAT provides a discrete-

event simulator. In simulation, system models follow the

operation semantics in order to guarantee that each step

reflects a meaningful execution of the system. Users could

choose automatic simulation, which means the simulator will

randomly execute the model and generate random states, or

manual simulation, which allows users to choose the next event

from the current enabled events. Through simulation, users can

visually check how the model executes step by step, which is

useful in system design and analysis, especially when there

are undesired executions found in verification. Simulation is

a complement to verification and it makes debugging more

convenient.

Compared with simulation, automatic verification provides

accurate results of whether a property is satisfied in a sys-

tem because it performs exhaustive exploration of the state

space. Compared with other exploration methods such as SAT

solvers, model checkers have their formal modeling languages,

which can be easily used to build accurate desired models.

Also, automated verification algorithms in model checking

can efficiently and completely analyze the dynamics of the

targeted systems. The properties verified in this paper are well-

known problems in the model checking domain; therefore it is

reasonable to select model checking as the suitable technique

for our analysis and verification.

We chose PAT here because compared with other well-

known model checkers such as SPIN, PRISM and MCMAS,

PAT has a more expressive modeling language. Through

imported C# libraries, PAT can model complex data structures

and algorithms, such as Equation (1) or even calculus formulae

if needed. Besides, modeling the algorithm and data structure

directly in other model checkers would significantly increase

the state space, e.g., implementing a hashing function.

Two aspects are important in verification with a model

checker. One is the properties it can support, and the other is

the efficiency of the verification algorithms. In the following,

we review two widely used properties in PAT, which are

related to our requirements in this work.

• Deadlock Checking: in system execution, it is possible

that no more actions can be executed at some state. It

is meaningful to check whether there are deadlock states

existing in the system, and the verification is similar to

reachability checking.

• LTL Checking: sometimes, properties may need temporal

information. In PAT, we choose LTL properties to capture

this kind of requirement. LTL formulae in PAT can be

built from not only atomic state propositions but also

events so that it is called SE-LTL [7]. It is very expressive

and suitable for PAT since our language is both event-

based and state-based. LTL verification in PAT follows

the classic automata-based approach [3].

IV. ROBUSTNESS ANALYSIS USING MODEL CHECKING

In this section, we describe the modeling and verification

details of the deviations of strategy profiles.

A. Modeling with Counter Abstraction

Given a set of agents denoted as N and a set of negotiation

strategies denoted as S, the n-agent negotiation problem can

6

be modeled as a strategic form game. Formally it can be

represented as a tuple 〈N, (Si), (Ui)〉 where

• N = {a1, a2, . . . , an} is the set of agents.

• Si is the set of negotiation strategies available to ai.

• Ui is the utility function of agent i, where Ui(P) corre-

sponds to the average payoff ai receives, given the set

of agents involved in the current negotiation is P , which

can be calculated according to Equation 2.

In this paper, we assume that each agent shares the same

set of actions, i.e., S1 = S2 = ... = Sn = S. Given

the negotiation strategy si ∈ S of each agent (process) ai,

we denote the global state α = (v, 〈s1, . . . , sn〉) = (v,Oi),
which is the combination of the valuations of the global

variables v5 and the chosen strategies of all agents (or the

game outcome Oi). If global variables are ignored, then each

global state represents a unique strategy profile in the system.

The transition relation T is built based on the single-agent

best deviation, i.e., an agent may change its current strategy to

another one according to the maximal deviation benefit. Thus

the formal model representing the dynamics of the negotiations

can be automatically constructed and is uniquely determined.

However, the state space of the model can be very large and

thus hinders the efficiency of analyzing the model, due to the

explosion of the combination of all agent processes’ strategy

choice. For example, consider the case of n agents and k strate-

gies; without taking the global variables into consideration, the

number of possible combinations of all agent processes’ local

states is kn. To handle the state explosion problem, we can

take advantage of the intrinsic agent-symmetric property of

the negotiation game. According to Equation 2, we can see

that the expected utility of an agent is obtained by averaging

over all payoffs from negotiating with the rest of the agents in

the tournament. Also the payoff from bilateral negotiation for

each pair of agents only depends on the specific negotiation

strategies of agents, which is not affected by the identities

of agents. Thus each agent’s utility over a particular outcome

is only determined by the number of agents choosing each

strategy, and is not influenced by the identities of the agents.

Accordingly, in the robustness analysis, there is no need to

record the specific strategy adopted by each agent, and it will

not affect the overall analysis results.

As a result, we adopt the counter abstraction technique [25]

to reduce the state space in our model. In model checking,

counter abstraction is a special case of symmetry reduction.

If a system is composed of several behaviorally similar pro-

cesses, and the process ID has no effect on the behavior of

the whole system, we can abstract its state space by grouping

the processes based on in which local state they reside. For

example, suppose there are 3 behaviorally similar processes

residing in a system. Instead of saying “process 1 is in state s,

process 2 is in state t and process 3 is in state s”, we simply

say “two processes are in state s and one process is in state

t”. In this way, the state space can be reduced by exploiting

the state space symmetry.

In EGT analysis, the agents always choose strategies from

the same strategy group and the identities are not important;

therefore this abstraction technique can be applied. We only

need to consider how many agents choose each strategy at the

Fig. 2. One Step of the Negotiations

same time. Previously, given two states in which the numbers

of agents choosing each strategy are the same, but the identities

of the agents choosing the same strategy are different, they

are defined as different states. Now they can be merged into

a single state. For example, consider an EGT analysis with

5 agents and 3 strategies and two possible global states s =
(v, 〈s1, s1, s2, s2, s3〉) and s′ = (v, 〈s1, s2, s2, s3, s1〉). We only

need to keep track of the number of agents choosing each

strategy, i.e., we have f (s1) = 2, f (s2) = 2, f (s3) = 1, where

f (s) records the number of agents choosing strategy s, and

thus the two original global states are reduced to a single

state (v, f). Thus, we can reduce the state space of multi-agent

negotiation models.

Next, we use the 8-agent 8-strategy negotiations, which is

the setting adopted in the final round of the ANAC, to show

the formal modeling of the system. The group of strategies is

denoted as S = {s1, s2, · · · , s8}. Since the counter abstraction is

used, we do not record the individual agent’s strategy. Instead,

states representing the overall strategies distribution between

agents are defined. We take one step of the dynamic behaviors

of the system as an example.

In Fig 2, the arrows indicate the direction of the state

transition. (i, j, k, l,m, n, s, t) is used to represent a strategy

profile in the system. i means currently there are i agents

choosing s1 and m means there are m agents choosing s5.

The sum of these integers should be 8. This combination

is a state in the corresponding LTS. For the whole system,

given a strategy profile, there are at most 8 enabled outgoing

transitions, because each transition corresponds to the single-

agent best deviation for each individual strategy. Therefore,

there are 8 outgoing arrows from state (i, j, k, l,m, n, s, t)
displayed in the figure.

Let us take the uppermost arrow in the figure as an example.

This is a potential transition which means one agent choosing

s1 tries to deviate to another strategy according to the best

payoff it can achieve. If this transition can happen, i must be

7

Algorithm 1: Deciding single-agent best deviation

input : intArray strategy[8];

output: int T ;

1 Initialize T = 0;

2 Initialize utility one[i] = 0, i = 1, 2, ..., 8
3 Initialize utility[i][j] = the corresponding expected payoff

of strategy i against strategy j.

4 for i = 1 → 8 do

5 for j = 1 → 8 do

6 Let num = strategy[j];

7 if j = 1 then

8 num = num - 1;

9 if num > 0 then

10 for k = 1 → num do

11 utility one[i] = utility one[i]+utility[i][j];

12 Let max = 0.0;

13 for i = 1 → 8 do

14 if max < utility one[i] then

15 max = utility one[i];

16 T = i;

17 return T ;

positive; otherwise no agent can abandon s1. A label i > 0
is used on the arrow to represent this constraint. Assume

this condition is true; then there are some agents currently

choosing s1, and one of them may have the incentive to change

s1 to another strategy which can mostly increase its payoff.

Which strategy will be the agent’s new choice? The answer is

decided via the negotiation procedure represented by Out 1, in

which Out 1 means there will be an agent replacing its current

strategy from s1 to another. The details of the negotiation

procedure Out i (i = 1, 2, ..., 8) is described later. Afterwards,

a new state (i-1, j’, k’, l’, m’, n’, s’, t’) will be generated

since a new strategy profile is obtained. Because one agent

abandons s1, then i becomes i-1. One of the other 7 integers

will increase by 1 according to the result of Out 1.

After defining the transition rules of an individual state,

another question is what the initial distribution of the strategies

is among the agents, i.e., the initial strategy profile. This is

important since it affects the executions thereafter. For exam-

ple, (8, 0, 0, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 8) have totally

different behaviors in their future executions because of the

different payoff of different strategies. For robustness analysis,

we should consider all possible scenarios of the system, i.e., it

is better that the initial states cover all strategies profiles. Since

PAT only supports one initial state, we manually add a virtual

(non-existing) state as the initial state which is guaranteed to

transit to all possible strategy profiles. This extra state does not

affect the robustness analysis. In this way, all possible strategy

profiles have been considered as one possible initial state of

the system.

We illustrate the algorithms used in the model to decide

single-agent best deviation. Here we use algorithm Out 1 as

Algorithm 2: High-level modeling in PAT

input : intArray strategy[8];

output: int T ;

1 P(i, j, k, l,m, n, o, p) = [i > 0
2 &&call(IdeviateToJ, i, j, k, l,m, n, o, p)]DeviationIJ →

P(i − 1, j + 1, k, l,m, n, o, p)
3 //transition 1: modeling the case of deviating from the

first strategy to the second one

4 []
5 [i > 0&&call(IdeviateToK, i, j, k, l,m, n, o, p)]

DeviationIK → P(i − 1, j, k + 1, l,m, n, o, p)
6 //transition 2. modeling the case of deviating from the

first strategy to the third one.

7 [] . . .

an example shown in Alg. 1, in which we want to check

which strategy has a better payoff compared with s1. In Alg. 1,

the input is the array strategy[8] which represents the current

strategy profile, i.e., the ith element in this array indicates

the number of agents choosing strategy si. The output is the

strategy that an agent adopting strategy s1 will be switched

to under the single-agent best deviation principle. The array

utility one is the average utility that an agent adopting s1 can

obtain during the tournament and is initialized to 0 (Line 2).

The array utility stores the corresponding payoffs obtained

for each strategy when it negotiates against others (Line 3).

Lines 4 to 11 calculate the average utility that any agent

currently adopting s1 can obtain during the tournament by

deviating to other strategies according to Equation (2). Next

the best deviation choice for any agent currently adopting s1
is calculated in Lines 12-16 and T will be returned. In this

algorithm, T can be 1 to 8. Actually if T = 1, it means there

is no need for agents using s1 to change their choice, and thus

no transition from the current state (i, j, k, l,m, n, s, t) will be

generated. For simplicity, the transition generated by Out 1 in

Fig. 2 ignores this case by assuming i will always be decreased

by 1.

Strategy updating for each agent in Alg. 1 is nontrivial

for traditional model checkers because of the existence of

loops and real-valued matrices. In PAT, the single-agent best

deviation algorithm for each strategy is implemented as a C#
library and is imported into the PAT model. Each algorithm

corresponds to one function which can be called directly in

the PAT model following the syntax of call(functionname,

parameter1, parameter2, ..., parameter8), where parameteri

corresponds to the number of agents choosing strategy i. One

code fragment of the high level modeling in PAT is shown

in Algorithm 2. Process P models the current state of the

system in terms of the number of agents choosing each strategy

denoted as i, j, ...p. We model possible system state transitions

as guarded processes, which are then combined together

using the choice operator []. The function IdeviateToJ is one

implementation of the single-agent best deviation (Algorithm

1) in C# and is called to determine whether the corresponding

process will be executed or not.

8

B. Properties Verification

From the analysis of Section III-B, empirical pure strategy

Nash equilibrium, best reply cycle and the resulting basin of

attraction should be verified. In the following we describe

the corresponding model checking algorithms used to check

suitable properties.
1) Empirical Pure Strategy Nash Equilibrium: The exis-

tence of empirical pure strategy Nash equilibrium means there

exist some states that all agents in the negotiation setting

will keep their strategies, so that no outgoing transition exists

from these states. From the viewpoint of model checking,

these states are deadlock states in the system. On the other

hand, each state in the system is corresponding to a strategy

profile; therefore each deadlock state existing in the model

indicates the agents will not change their mind, and this state

should satisfy empirical pure strategy Nash equilibrium. As

a result, deadlock checking can be used to check whether

empirical pure strategy Nash equilibrium exists in the system.

In traditional deadlock checking, the verification algorithm

stops whenever a deadlock state is found, and returns a

counterexample. Otherwise no deadlock state exists. In our

setting, we need to find all deadlock states instead of one in

order to analyze the robustness. So we modify the traditional

deadlock checking algorithm to capture all deadlock states, if

there are any.
2) Best Reply Cycle: Best reply cycle describes the scenario

where there are several states composing a group, and these

states do not have outgoing transitions to states outside this

group. In this case, states in the group cannot reach states

which correspond to empirical pure strategy Nash equilibrium

since they can always transit to other states. From the view-

point of model checking, the desired groups are nontrivial

BSCCs in the state space. It is trivial to show that all nontrivial

BSCCs should be best reply cycle. Therefore our target is to

find all nontrivial BSCCs. SCC searching is widely used in

model checking techniques, especially for LTL verification.

Tarjan’s SCC searching algorithm [32] can be applied here

to find all nontrivial SCCs, and BSCCs are restored as our

targets.
3) Basin of Attraction: Based on the above two properties,

the stability of different strategy profiles can be decided. All

empirical pure strategy Nash equilibria and best reply cycles

compose the stable sets of the negotiation system. Basin of

attraction of a stable set is defined as the percentage of strategy

profiles which can lead to itself through a series of single-agent

best deviations, i.e., the percentage of the states in the system

reaching the deadlock states or BSCCs. It can be calculated

based on the results of the above two properties, since the total

number of states reaching each stable set can be recorded. One

strategy is robust if and only if it belongs to stable sets with

large basin of attraction.

V. EVALUATION

In this section, we apply our approach to perform robustness

analysis on the top strategies chosen from ANAC 2010-

2012 using PAT [21], [22], [29]. We perform the negotiation

competition among all strategies in three ANAC finals and

choose the top 6 as our target:

• Gahboninho (G): the Gahboninho strategy learns to pre-

dict whether the opponent is concessive or not based

on the past negotiation experience (the proposals of

the opponent), and adjusts its behavior based on the

prediction. If the opponent is predicted to be concessive,

it will behave in a very selfish way by giving up almost no

utility; Otherwise, it will adapt itself to minimize losses

by giving up more utility to its opponent.

• HardHeaded (H): the HardHeaded strategy gradually

increases its concession degree to the opponent as ne-

gotiation continues. It always proposes the bid which is

estimated to give the highest utility to its opponent from

the set of bids over which the HardHeaded agent’s utility

is higher than its acceptable threshold.

• IAMhaggler2011 (I): the IAMhaggler2011 strategy em-

ploys a Gaussian process regression technique to predict

the opponent’s behavior and determines its optimal con-

cession strategy based on its predictions and the time

constraints.

• AgentLG (A): the AgentLG strategy divides the negoti-

ation period into three different stages and makes more

concessions to the opponent as the negotiation moves into

the next stage. At the same time, it learns the preference

function of the opponent from the negotiation history and

always proposes the offer that is both higher than its

current acceptance threshold and also is expected to give

the highest utility to the opponent.

• CUHKAgent (C): the CUHKAgent strategy employs the

non-exploitation point to adaptively adjust the appropriate

time to stop exploiting the negotiating partner and also

predicts the optimal offer for the negotiating partner based

on a reinforcement-learning based approach [14], [16].

• OMACAgent (O): the OMACAgent predicts the utilities

of its opponent’s future counter-offers using wavelet

decomposition and cubic smoothing spline techniques.

Based on the prediction of the future utilities that the

opponent is willing to offer, the OMAC agent adaptively

adjusts its concession rate [8].

The set of top strategies are abbreviated as S =
{G, H, I, A, C, O}. We use the notation P to represent the

set of agents participating in the negotiation.

Given any two negotiation strategies, their corresponding

payoffs from the bilateral negotiation are obtained by aver-

aging over all negotiation domains used in the ANAC. The

detailed payoff matrix for all possible bilateral negotiations

between these top strategies is given in Table I and will be

used as the basis for performing the robustness analysis. Next,

multiple experiments are conducted under different numbers

of agents to analyze the robustness of these strategies and

illustrate the effectiveness of our approach.

A. Bilateral Negotiations among Six Possible Strategies

In the context of bilateral negotiations, there exist 2 agents,

i.e., |P| = 2, and the strategy set S is defined as above. Each

agent can choose any strategy from the set S during negotia-

tion. Through the counter abstraction approach, the state space

of the negotiation model is reduced from |S|
|P|

= 62 = 36

9

TABLE I
PAYOFF MATRIX FOR THE TOP SIX NEGOTIATION STRATEGIES IN ANAC

2010-2012 AVERAGE OVER ALL DOMAINS (FOR EACH STRATEGY

PROFILE, ONLY THE ROW AGENT’S PAYOFF IS GIVEN SINCE THE GAME IS

SYMMETRIC.)

U(p, p′) G H I A C O

G 0.6803 0.5202 0.8120 0.5801 0.5892 0.5545
H 0.6620 0.5995 0.7567 0.5694 0.6041 0.5485
I 0.6219 0.5641 0.7149 0.5946 0.4704 0.4915
A 0.7092 0.5900 0.7870 0.5675 0.6638 0.5612
C 0.7397 0.6388 0.8261 0.5515 0.5971 0.5897
O 0.6973 0.6275 0.7705 0.5513 0.6053 0.5711

TABLE II
ROBUSTNESS RANKING OF STRATEGIES IN BILATERAL NEGOTIATIONS.

Strategy G H I A C O

Ranking 5th 5th 1st 1st 1st 4th

to
(|P|+|S|−1

|S|−1

)

= 21. This reduction can help to reduce the

verification time of PAT. The verification results are:

• Verification time: 0.1 second.

• Deadlock states: there are no such states.

• BSCCs: there is only one nontrivial BSCC existing

in the system: (0, 0, 0, 1, 1, 0) → (0, 0, 1, 1, 0, 0) →
(0, 0, 1, 0, 1, 0) → (0, 0, 0, 1, 1, 0).

• States reaching deadlock or BSCCs: 21 states reach the

BSCC; no state reaches deadlock states.

Under bilateral negotiations, there is no empirical pure

strategy Nash equilibrium and there exists only one best

reply cycle, i.e., (0, 0, 0, 1, 1, 0) → (0, 0, 1, 1, 0, 0) →
(0, 0, 1, 0, 1, 0) → (0, 0, 0, 1, 1, 0). Here 0 and 1 indicate the

number of agents choosing each strategy, and the order of

these numbers in one state is consistent with the strategies

order listed in S. The basin of attraction of this cycle is 100%,

i.e., for all possible initial strategy profiles, there always exists

a single-agent best deviation path which can lead to one of the

strategy profiles within this cycle. Strategies I, A and C are

contained in strategy profiles within the cycle, which indicates

that I, A and C are very robust against other strategies since

agents will be willing to deviate to them no matter what their

initial strategies are. EGT analysis in [1] has the same result

in this scenario. In other words, both approaches generate the

same best reply cycle because each strategy profile in this

cycle only has one outgoing transition.

Next, we investigate the overall ranking of these top strate-

gies according to their robustness. We adopt the elimination

mechanism used in [6]. Different from [6] which eliminates the

worst player, we gradually eliminate the most robust strategies

available to the agents in the experiment, and try to find

the most robust strategies in the remaining ones. Note that

the robustness of one strategy may be related with some

opponents’ performance. Note that the ranking of a given

strategy may be affected by the presence, or absence, of other

strategies, and may depend on the number of agents.

According to the existence of best reply cycle, we can con-

clude that strategies I, A, and C rank the first in all strategies

in the current system. These three strategies are removed from

S, and the robustness analysis is conducted with the remaining

TABLE III
ROBUSTNESS RANKING OF STRATEGIES IN SIX-AGENT NEGOTIATIONS.

Strategy G H I A C O

Ranking 1st 6th 1st 1st 1st 5th

three strategies. Step by step, the overall robustness ranking of

these top strategies in bilateral negotiations is listed in Table II.

O has the average robustness, while G and H are relatively not

so robust. Therefore, the agents having the last two strategies

will try to change their choices to get better payoff.

In most cases a tournament setting involves more than two

agents. Therefore, the following checks whether the number

of agents could affect the robustness of the strategies.

B. Six-agent Negotiations among Six Possible Strategies

We increase the number of agents to six over the set S, i.e.,

|P| = 6. The total number of strategy profiles can be reduced

from | S ||P|= 66 = 46656 to
(|P|+|S|−1

|S|−1

)

= 462 considering

the symmetry of the negotiation. The verification results from

PAT are as follows:

• Verification time: 0.4 seconds.

• Deadlock states: there is no such states.

• BSCCs: there is only one nontrivial BSCC existing

in the system: (2,0,0,2,2,0), (2,0,0,3,1,0), (1,0,0,4,1,0),

(1,0,1,4,0,0), (2,0,1,3,0,0), (2,0,1,2,1,0), (2,0,1,1,2,0),

(1,0,1,2,2,0), (0,0,1,3,2,0), (1,0,0,3,2,0), (0,0,0,4,2,0),

(1,0,1,3,1,0), (0,0,1,4,1,0), (0,0,0,5,1,0), (0,0,1,5,0,0).

• States reaching deadlock or BSCCs: 462 states reach the

BSCC; no state reaches deadlock states.

There is only one best reply cycle. Here these states compose

a real BSCC instead of a single cycle, which is generated via

our single-agent best deviation based approach and is different

from the result under the definition of [1]. For instance, state

(2, 0, 1, 3, 0, 0) can go to (2, 0, 0, 3, 1, 0) and (2, 0, 1,

2, 1, 0), and all these three states are in the BSCC. On the

contrary, applying the method in [1] only generates a best reply

cycle (1, 0, 1, 4, 0, 0) → (2, 0, 1, 3, 0, 0) → (2, 0, 0, 3, 1, 0) →
(1, 0, 0, 4, 1, 0) → (1, 0, 1, 4, 0, 0). Thus we are able to pro-

vide more realistic robustness analysis and some important

information is lost in the previous anlaysis.

Obviously, the basin of attraction of our BSCC is 100%.

Next, we rank the strategies in the six-agent negotiation

scenario. Strategies G, I, A and C are contained in strategy

profiles within the BSCC, which indicates that in the six-

agent scenario, G is also very robust. G, I, A and C are

removed and the robustness analysis is conducted with the

remaining strategies H and O. The ranking information is

listed in Table III. We conclude that in this six-agent scenario,

H is relatively not so robust.

C. Ten-agent Negotiations among Six Possible Strategies

We investigate a ten-agent negotiation scenario over the

set S, i.e., |P| = 10. The total number of strategy profiles

considered can be reduced from |S|
|P|

= 610 = 60466176
to

(|P|+|S|−1

|S|−1

)

= 3003 considering the symmetry of the

negotiation. The verification results from PAT are:

10

TABLE IV
ROBUSTNESS RANKING OF STRATEGIES IN TEN-AGENT NEGOTIATIONS.

Strategy G H I A C O

Ranking 1st 5th 6th 1st 3rd 3rd

TABLE V
ROBUSTNESS RANKING OF STRATEGIES IN THE TWENTY-AGENT

NEGOTIATIONS.

Strategy G H I A C O

Ranking 1st 5th 6th 1st 3rd 3rd

• Verification time: 2.8 seconds.

• Deadlock states: there is one deadlock state (3, 0, 0, 7,

0, 0).

• BSCCs: there is no nontrivial BSCC existing in the

system.

• States reaching deadlock or BSCCs: all 3003 states reach

the deadlock state.

Because there is only one deadlock state in the system, we

conclude that one empirical pure strategy Nash equilibrium

exists in the ten-agents negotiation scenario: (3, 0, 0, 7, 0, 0).

When 3 agents choose G and 7 agents choose A, no further

strategy deviation will happen. In this case, G and A are

the most robust strategies. This result is consistent with the

outcome obtained via the method in [1]. The basin of attraction

of this equilibrium is 100%.

Again, we get the robustness ranking of these strategies in

this ten-agent scenario (Table IV). G and A have the best

robustness; C and O have average performance and H and I

are not so robust.

D. Twenty-agent Negotiations among Six Possible Strategies

We further increase the number of agents to twenty, there-

fore |P| = 20. The total number of strategy profiles con-

sidered can be reduced from | S ||P|= 620 = 3.66E15
to

(|P|+|S|−1

|S|−1

)

= 53130 considering the symmetry of the

negotiation. The verification results from PAT are:

• Verification time: 83.8 seconds.

• Deadlock states: there is one deadlock state (6, 0, 0, 14,

0, 0).

• BSCCs: there is no nontrivial BSCC existing in the

system.

• States reaching deadlock or BSCCs: all 53130 states

reach the deadlock state.

Similar to the ten-agent scenario, the twenty-agent case only

has one empirical pure strategy Nash equilibrium: (6, 0, 0,

14, 0, 0). Again, G and A are the most robust strategies. This

result is also consistent with the outcome obtained via the

method in [1]. The basin of attraction of this equilibrium is

100%, i.e., all strategy profiles can reach this equilibrium via

single-agent best deviation paths.

The robustness ranking of these six strategies under twenty-

agent negotiation scenarios is listed in Table V, which is

consistent with the ranking in ten-agent negotiation scenario.

The robustness rankings may be different when different

numbers of agents participate in the negotiation. This is

Fig. 3. Deviation Analysis Graph for All Strategy Profiles

reasonable since whether one agent will change its strategy de-

pends on its opponents’ situation. We summarize the rankings

in Fig. 3. Strategy A always has the best robustness no matter

how many agents participate in the negotiation. G is also very

robust when more than 6 agents are involved. By contrast, I is

attractive when the number of agents is small, but it is not so

robust if more agents are taken into consideration. C has stable

performance since it is always in the top 3 in the robustness

ranking. O always ranks between 3rd to 5th, which means it

is not very attractive. H is most likely to be abandoned by

agents in this top six strategies competition. These rankings

indicate that different strategies have different robustness in

various scenarios; thus our analysis results provide valuable

recommendations and reference for selecting the best strategy

in terms of robustness within different negotiation contexts.

VI. CONCLUSION

In this work, we proposed to improve the EGT analysis

via model checking approach to analyze the robustness of

negotiation strategies in a general multi-agent system. This

approach guarantees the automaton, efficiency and complete-

ness of the analysis procedure. The dynamics of strategy

profiles are modeled in a formal modeling language. In order

to reduce the state space, the counter abstraction technique is

applied in the modeling. Afterwards, properties representing

empirical pure strategy Nash equilibrium, best reply cycle and

the corresponding basin of attraction are formally verified by

PAT. The approach is effective and efficient in analyzing these

properties, and it can also be used to generate the overall

robustness rankings of the strategies.

The current robustness analysis relies on the assumption

of single-agent best deviation, which only allows each agent

to switch to the strategy that could bring it the highest

possible deviation benefit on average. However, it might be

more practical to consider probabilistic deviation under which

each negotiator chooses to switch to other strategies with

certain probability since the actual deviation benefit for each

strategy could be uncertain. Meanwhile, although the counter

abstraction technique has a remarkable effect in reducing the

state space of multi-agent systems, it requires that all agents

are identical. In many scenarios such as auctions, the dynamics

of agents may be different. Thus another interesting direction

is to explore how to handle the cases with heterogeneous

agents.

11

VII. ACKNOWLEDGEMENT

This work is supported by “Formal Verification on Cloud”

project under Grant No: M4081155.020 and “Bring the Ad-

vanced Model Checking Techniques to Real-world Problems”

project under Grant No: M4011178.020. The work presented

was partially supported by CUHK Research Committee Fund-

ing (Direct Grants) Project Code EE13379.

NOTES

1Here Vi can be either discrete values or continuous real values.
2This concept is similar to the concept of pure strategy Nash equilibrium in

classical game theory, but it is called empirical pure strategy Nash equilibrium
since the analysis is based on empirical results.

3Via external libraries, CSP# supports any user-defined data type.
4Without losing generality, we assume there is only one initial state in the

system.
5Here the global variables refer to all variables defined in the model apart

from the local variables (s1, . . . , sn) storing the strategy choices for each
agent.

REFERENCES

[1] T. Baarslag, K. Fujita, E. H. Gerding, K. Hindriks, T. Ito, N. R.
Jennings, C. Jonker, S. Kraus, R. Lin, V. Robu, and C. R. Williams.
Evaluating practical negotiating agents: Results and analysis of the 2011
international competition. Artificial Intelligence Journal, 198:73–103,
May 2013.

[2] T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin. The first
automated negotiating agents competition (anac 2010). New Trends in

Agent-Based Complex Automated Negotiations, pages 113–135, 2010.
[3] C. Baier and J. Katoen. Principles of Model Checking. The MIT Press,

2008.
[4] P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agents verification

through probabilistic model-checking. In SASEMAS’09, Lecture Notes
in Computer Science, pages 162–174, 2009.

[5] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying
multi-agent programs by model checking. AAMAS, 12:239–256, 2006.

[6] B. Bouzy and M. Métivier. Multi-agent learning experiments on repeated
matrix games. In Proceedings of ICML’10, pages 119–126, 2010.

[7] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha.
State/Event-Based Software Model Checking. In Proceedings of

IFM’04, pages 128–147, 2004.
[8] S. Q. Chen and G. Weiss. An efficient and adaptive approach to

negotiation in complex environments. In Proceedings of ECAI12, pages
228–233, 2012.

[9] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis.
PRISM-games: A model checker for stochastic multi-player games. In
Proceedings of TACAS’13, volume 7795, pages 185–191, 2013.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 1999.

[11] P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make
negotiation trade-offs. Artifical Intelligence, 142(2):205–237, 2003.

[12] P. A. Gongora and D. A. Rosenblueth. A characterization of mixed-
strategy nash equilibria in pctl augmented with a cost quantifier. Com-

putational Logic in Multi-Agent Systems, 6214:158–177, 2010.
[13] H. Hansson and B. Jonsson. A logic for reasoning about time and

reliability. Formal Aspects of Computing, 6:102–111, 1994.
[14] J. Y. Hao and H. F. Leung. Abines: An adaptive bilateral negotiating

strategy over multiple items. In Proceedings of IAT’12, pages 95 – 102,
2012.

[15] J. Y. Hao, S. Z. Song, Y. Liu, J. Sun, L. Gui, J. S. Dong, and H. F. Leung.
Probabilistic model checking multi-agent behaviors in dispersion games
using counter abstraction. In Proceedings of PRIMA’12, pages 16–30,
2012.

[16] J. Y. Hao, S.Z., H.F. Leung, and Z. Ming. An efficient and robust negoti-
ating strategy in bilateral negotiations over multiple items. Engineering

Applications of Artificial Intelligence, 34:45–57, 2014.
[17] K. Hindriks and D. Tykhonov. Opponent modeling in auomated multi-

issue negotiation using bayesian learning. In Proceedings of AAMAS’08,
pages 331–338, 2008.

[18] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A
Tool for Automatic Verification of Probabilistic Systems. In Proceedings

of TACAS06, pages 441–444, 2006.

[19] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[20] Gerard J. Holzmann. The model checker spin. IEEE Transactions on

Software Engineering, 23:279–295, 1997.
[21] Y. Liu, J. Sun, and J.S. Dong. Developing model checkers using pat. In

Proceedings of 8th International Symposium Automated Technology for

Verification and Analysis (ATVA 2010), volume 6252, pages 371–377,
2010.

[22] Y. Liu, J. Sun, and J.S. Dong. Pat 3: An extensible architecture for
building multi-domain model checkers. In Proceedings of International

Symposium on Software Reliability Engineering (ISSRE), pages 190–
199, 2011.

[23] J. Estelle M. P. Wellman, S. Singh, Y. Vorbeychik, and V. Soni. Strategic
interactions in a supply chain game. Computational Intelligence,
21(1):1–26, 2005.

[24] F. Mari, I. Melatti, I. Salvo, E. Tronci, L. Alvisi, A. Clement, and H. Li.
Model checking coalition nash equilibria in mad distributed systems. In
Stabilization, Safety, and Security of Distributed Systems, pages 531–
546. Springer, 2009.

[25] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,∞)-counter abstrac-
tion. In Proceedings of the 14st International Conference on Computer

Aided Verification (CAV’02), pages 107–122, 2002.
[26] J. W. Pratt. Risk aversion in the small and in the large. Econometrica,

32:122–136, 1964.
[27] A.S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable

language. In Proceeding of MAAMAW’96, pages 42–55, 1996.
[28] S. Saha, A. Biswas, and S. Sen. Modeling opponent decision in repeated

one-shot negotiations. In Proceedings of 4th international joint con-

ference on Autonomous Agents and Multi-Agent Systems (AAMAS’05),
pages 397–403, 2005.

[29] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In Proceedings of the 21st International
Conference on Computer Aided Verification (CAV’09), pages 709–714,
2009.

[30] J. Sun, Y. Liu, J.S. Dong, and C.Q. Chen. Integrating specification
and programs for system modeling and verification. In Proceedings of
TASE’09, pages 127–135, 2009.

[31] E. M. Tadjouddine, F. Guerin, and W. Vasconcelos. Abstraction for
model checking game-theoretical properties of auction(short paper). In
Proceedings of AAMAS’08, pages 1613–1616, 2008.

[32] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.

Comput., 1(2):146–160, 1972.
[33] D. R. Vasconcelos and E. H. Haeusler. Reasoning about games via a

first-order modal model checking approach. In Proceedings of SBMF07

10th Brazilian Symposium on Formal Methods, 2007.
[34] P. Vytelingum, D. Cliff, and N.R. Jennings. Strategic bidding in

continuous double auctions. Artificial Intelligence, 172(14):1700–1729,
2008.

[35] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings. Using
gaussian processes to optimise concession in complex negotiations
against unknown opponents. In Proceedings of IJCAI’11, pages 432–
438, 2011.

[36] M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model checking
multi-agent systems with mable. In Proceedings of AAMAS’02, pages
952–959, 2002.

[37] H. Yong. The evolution of conventions. Econometrica, 61(1):57–84,
1993.

Songzheng Song received his PhD degree in Com-
puter Science from National University of Singapore
in 2013. After that, he worked as a postdoctoral
fellow in Nanyang Technological University for one
year and now he works in Autodesk as a software
engineer. His current research interests focus on
formal methods and multiagent systems.

12

Jianye Hao received his PhD degree in Computer
Science and Engineering from The Chinese Univer-
sity of Hong Kong in 2013. Since then, he works as
a SUTD-MIT postdoctoral Fellow at Massachusetts
Institute of Technology (MIT) and Singapore Uni-
versity of Technology and Design (SUTD). His cur-
rent research interests focus on multiagent systems
and network security.

Yang Liu received Bachelor and PhD degrees in
computing science from National University of Sin-
gapore (NUS) in 2005 and 2010, and continued with
his post doctoral work in NUS. Since 2012, he joined
Nanyang Technological University as an Assistant
Professor. His research focuses on software engi-
neering, formal methods and security, and particu-
larly specializes in software verification using model
checking techniques, which led to the development
of a state-of-theart model checker, Process Analysis
Toolkit.

SUN, Jun received Bachelor and PhD degrees
in computing science from National University of
Singapore (NUS) in 2002 and 2006. Since 2010,
he joined Singapore University of Technology and
Design (SUTD) as an Assistant Professor. Jun’s re-
search interests include software engineering, formal
methods and cyber-security.

Ho-fung Leung received his BSc and MPhil degrees
in Computer Science from The Chinese University
of Hong Kong, and his PhD degree from University
of London with Diploma of Imperial College in
Computing from Imperial College London. He is
currently a Professor in the Department of Computer
Science and Engineering at The Chinese University
of Hong Kong. His research interests cover various
aspects centring around artificial intelligence and the
web, including ontologies, intelligent agents, self-
organising systems, complex systems, and social

computing.

Jie Zhang obtained Ph.D. in Cheriton School of
Computer Science from University of Waterloo,
Canada, in 2009. He is currently an Assistant
Professor of the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.
His research interests include Artificial Intelligence,
Multiagent System and Trust Management, and his
papers have been published by top journals and
conferences and won several best paper awards.

	Introduction
	Related Work
	Background
	Negotiation Model
	Robustness Analysis using Empirical Game Theoretic Approach
	PAT

	Robustness Analysis using Model Checking
	Modeling with Counter Abstraction
	Properties Verification
	Empirical Pure Strategy Nash Equilibrium
	Best Reply Cycle
	Basin of Attraction

	Evaluation
	Bilateral Negotiations among Six Possible Strategies
	Six-agent Negotiations among Six Possible Strategies
	Ten-agent Negotiations among Six Possible Strategies
	Twenty-agent Negotiations among Six Possible Strategies

	Conclusion
	Acknowledgement
	References
	Biographies
	Songzheng Song
	Jianye Hao
	Yang Liu
	SUN, Jun
	Ho-fung Leung
	Jie Zhang

