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Abstract—Automated program repair (APR) is a challenging
process of detecting bugs, localizing buggy code, generating fix
candidates and validating the fixes. Effectiveness of program
repair methods relies on the generated fix candidates, and the
methods used to traverse the space of generated candidates
to search for the best ones. Existing approaches generate fix
candidates based on either syntactic searches over source code
or semantic analysis of specification, e.g., test cases. In this
paper, we propose to combine both syntactic and semantic fix
candidates to enhance the search space of APR, and provide
a function to effectively traverse the search space. We present
an automated repair method based on structured specifications,
deductive verification and genetic programming. Given a function
with its specification, we utilize a modular verifier to detect
bugs and localize both program statements and sub-formulas
in the specification that relate to those bugs. While the former
are identified as buggy code, the latter are transformed as
semantic fix candidates. We additionally generate syntactic fix
candidates via various mutation operators. Best candidates,
which receives fewer warnings via a static verification, are
selected for evolution though genetic programming until we find
one satisfying the specification. Another interesting feature of our
proposed approach is that we efficiently ensure the soundness of
repaired code through modular (or compositional) verification.
We implemented our proposal and tested it on C programs taken
from the SIR benchmark that are seeded with bugs, achieving
promising results.

Index Terms—Automated Repair, Genetic Programming, De-
ductive Verification, Sound Repair

I. INTRODUCTION

To automate the maintenance process, researchers have
recently shown an increased interest in program repair tools
[7], [15], [21], [29]. Automated program repair is a process
of detecting bugs, localizing bugs, generating fix candidates
and validating the fixes. We can broadly classify these tools
into two categories. The first class of program repair tools
generates fix candidates syntactically. These are tools (i.e. [6],
[14], [24], [27], [29], [13], [19]) that repair the program based
on a heuristic (and sometimes stochastic, such as guided via
a genetic programming approach) traversal of the space of
syntactic modifications.These heuristic-based tools have been
shown to be as the most effective and scalable ones [14].

The second class of program repair tools generates fix can-
didates semantically. These are tools (i.e. [4], [7], [15], [21],
[26], [20], [12]) that repair programs based on specifications
and semantic analysis. Specifications can be a test suite [21],

[26], [20], behavioral specification [4] or component specifi-
cation [7]. Analyses used in these tools include specification
inference [15], [21], [20], bounded verification with SAT [4],
abstract interpretation [15], and model checking [7]. Bugs
are detected when the semantic analysis cannot prove the
correctness of a program against its specification. Based on the
specification, those tools can synthesize fix candidates such
that a repaired program patched with such a fix candidate
complies to the specification semantically.

In this work, we propose to combine syntactic search-based
and semantic-based techniques to enhance the expressiveness
of fix candidates. We present a framework for automated
program repair that integrates deductive verification into a
genetic programming technique. We focus on programs whose
functional specifications (pre-, post-condition, code contracts
or assertions) are available and their correctness can be
checked by an automated software verification tool. Given
a program with its specification, our system detects bugs,
identifies the root cause of the bugs by localizing them to
relevant program statements and sub-formulas of the specifi-
cation, generates semantic and syntactic fix candidates, and
evolves candidates that receive fewer warnings from static
verification until a candidate complying with the specification
is found. Since the validation is based on sound deductive
verification, our approach guarantees the soundness of repaired
programs with respect to provided specifications. At the same
time, we achieve scalability through modular (compositional)
verification.

More concretely, our approach is a combination of three
techniques:
• Structured specification. We use a structured specifica-

tion mechanism [3] that is capable of capturing expres-
sive program requirements. This structured specification
allows verification to be done efficiently.

• Deductive verification. We use a Hoare-style verification
system, which abstracts program code to logic formulas
following symbolic execution paradigm. Function calls
are compositionally analyzed through their pre- and post-
specifications. The correctness of a program is reduced
to the correctness of generated verification conditions
(i.e. logical implications). Localization is performed at
the proof level [9] with a mapping between transformed
abstraction (formulas) and program source code.



• Genetic programming. Since automated program repair
using genetic programming uses the test cases to compute
the fitness of a candidate solution, we redesign the
algorithm to work with deductive verification and logic
specifications. Leveraging genetic programming, our re-
pair technique is general and able to deal with not only
incorrect but also missing source code implementation.

The integration of genetic programming and deductive ver-
ification to automated program repair is the primary novelty
of our approach. To the best of our knowledge, we are the
first one to propose such an integration for automated program
repair. Additionally, we propose path-sensitive bug localization
by pairing states at each program location with control-flow
variables, i.e., the variables of test conditions of if and loop

statements, to enable our system to generate semantic fix
candidates for buggy if− and loop−conditions.

We have implemented a prototype of our proposed approach
on top of GenProg [29] (as the genetic programming compo-
nent) and HIP/SLEEK [1], [9] (as the deductive verification
component). We have performed a preliminary evaluation
of our prototype on a set of ten C programs from the
SIR benchmark that are seeded with bugs. Our experiment
results show that our approach can automatically produce
sound repairs for incorrect and missing implementation errors
(including security defects, i.e., buffer overflow) in less than
seven minutes for all bugs, and outperforms recent state-of-the-
art semantics-based repair tool named Angelix [20], in terms
of the number of bugs correctly fixed.

The remainder of the paper is structured as follows. We
describe a motivating example to illustrate our proposed ap-
proach in Section II, followed by background in Section III.
Section IV describes the details of our proposed approach.
Section V presents the results of a preliminary evaluation of
our approach. Section VI discusses related work, followed by
conclusion and future work in Section VII.

II. A MOTIVATING EXAMPLE

In Listing 1, we show a code snippet from a function addstr

in the replace program taken from the SIR benchmark [2].
In the code snippet, we use requires and ensures keywords

to express the pre-condition and post-condition of the function.
In the requires and ensures clauses, the semantic of int ∗j, is
specified as j 7→int ref 〈j val〉 where j is a pointer pointing
to an object with value j val. Primed variables denote the
value of function parameters at the return point(s) of the
function. For example, j val′ denotes the value of j val after
the execution of function addstr.

The requirement of the else branch of addstr is specified
in line 5. The specification in line 5 indicates two important
constraints. First, the value of j after exiting the function
addstr, denoted by j val′, is increased by one. Second,
the value of outset[∗j] after exiting the function addstr,
denoted by outset′[j val′−1], is equal to c. However, the
else branch has been incorrectly implemented. As the value
of j is increased (line 14) before the array update (line 15),
the array outset may be overflowed. For this example, our

1 bool addstr(int c, int [] outset, int *j, int maxset)
2 /*
3 requires j|->int_ref<j_val> & maxset>=0 & j_val<= maxset case {
4 j_val=maxset -> ensures j|->int_ref<j_val> & j_val’=j_val & res=

false;
5 j_val<maxset -> requires j_val>=0 ensures j|->int_ref<j_val> &

j_val’=j_val+1 & outset’[j_val’-1]=c & j_val’<=maxset & res=
true;

6 j_val>maxset -> ensures true;
7 }
8 */
9 {

10 bool result;
11 if (*j >= maxset)
12 result = false;
13 else {
14 *j = *j + 1;
15 outset[*j] = c; //Bug: outset may be overflowed
16 result = true;
17 }
18 return result;
19 }

Listing 1. Code snippet from replace program of SIR benchmark with
a seeded bug

verification component detects a bug, and localizes the root
cause of the bug as statements in lines 11, 14 and 15 since
they violate the constraint outset′[j val′−1]=c (at line 5)
of the specification. Based on the violated specification, our
system generates a semantic fix candidate which replaces
outset[∗j]=c with outset[∗j−1]=c. Our genetic program-
ming component proposes another syntactic fix candidate for
this bug by just swapping the statements at line 14 and
line 15. These two fix candidates are then soundly validated
by the verifier. This example demonstrates that combining
both syntactic and semantic candidates condenses the correct
repairs within a huge space of possible candidates.

III. BACKGROUND

A. Program Repair with GenProg

GenProg uses genetic programming to guide the search for
a valid repair of a buggy program [28]. GenProg takes as
input a buggy program along with a set of test cases. The
repair process goes through two main phases: bug localization
and valid patch finding. At the first phase, suspicious areas
containing statements that are likely buggy are identified by
running the program against the test cases. These suspicious
areas are then the targets for the second phase which will
generate fix candidates.

In the second phase, GenProg leverages genetic program-
ming to generate fix candidates and search for a valid re-
pair among them. To create fix candidates (aka variants),
GenProg primarily uses mutation operators to syntactically
modify the original program in the suspicious areas. There
are four mutation operators: add, replace, delete and swap.
These mutations are applied to suspicious statements of the
original program to generate various variants that are possible
candidate repairs. The suitability of generated candidates is
then computed by running the candidates against test cases,
i.e., candidates passing more test cases have a higher suitability
score. Better candidates with higher suitability scores, are
selected and carried over to form a new generation of variants.
This process is repeated many times until a valid repair which



passes all the test cases is found or when a limit is reached
(i.e., a time limit, or a maximum number of generations).

B. Program Verification with HIP/SLEEK

Specification Language. We use structured specification
(from [3]) which supports case analysis of the form below:

Y ::= requires Φ Y | case{π1⇒Y1; . . . ; πn⇒Yn} |
ensures Φ

whereby Φ is a separation logic formula [22]. A separation
logic formula is a conjunction of a heap formula and a pure
(non-heap) formula. A heap formula is a spatial conjunction
(∗) of empty heap assertions (emp), points-to assertions (7→),
and user-defined predicates [1]. A pure formula is a first-order
logic formula capturing an expressive constraints of numerical
and bag/set domains. In HIP/SLEEK system, structured spec-
ification with separation logic can be used to efficiently and
effectively verify functional correctness [3]. Furthermore, such
a specification can be automatically inferred via second-order
bi-abduction [8].

In the case block of the specification, π1, ... ,πn are
guards corresponding to test conditions of if statements.
Guards are pure formulas without quantifiers. For a sound
and complete verification, these guards need to satisfy two
conditions: disjointness (i.e. πi∧πj≡false ∀ i, j ∈ {1...n}
and i 6= j), and universe (i.e. π1∨π2∨...∨πn≡true ). We
exploit these requirements to efficiently perform verification
when we validate fix candidates.

Modular Verification. HIP/SLEEK is a modular verification
system. It verifies a set of dependent functions bottom-up
and in isolation from other dependent functions. To verify
a function, its source code is symbolically executed and ab-
stracted into separation logic formulae. Functional correctness
is reduced to the correctness of verification conditions which
are generated during the symbolic execution. For example,
verification conditions generated at function exits for postcon-
ditions proving have the following form:

precondition ∧ code−abstract ` postcondition

These verification conditions are discharged by SLEEK, a
separation logic entailment procedure. In the case of a bug
being found, i.e., a verification condition cannot be proven,
HIP is able to identify the root cause of the bug by localizing
sub-formulas in the specification and program statements that
are relevant to the bug [9].

IV. PROPOSED APPROACH

The primary goal of our approach is to integrate deduc-
tive verification into genetic programming to generate both
semantic and syntactic fix candidates as well as to produce
sound repairs in a modular fashion. Fig. 1 depicts the workflow
of our approach. There are three main phases: bug detec-
tion/localization, fix candidate generation and fix candidate
validation/selection. These three phases are described in the
following subsections.
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Fig. 1. The workflow of our repair approach using genetic programming and
modular verification

A. Detecting and Localizing Bugs

The goals of this phase are to identify potential buggy
statements and uncover parts of the specification that are
violated.

This phase takes as input a program and its specification.
The HIP/SLEEK deductive program verifier checks the pro-
gram against the specification. If an error is detected, the ver-
ifier identifies the root cause of the error which includes sus-
picious statements and the corresponding violated parts of the
specification. For generating more expressive fix candidates,
we enhance the HIP/SLEEK error calculus presented in [9]
with path-sensitive localization. We implement the new feature
by adding variables v in test conditions of each if statement to
every downstream statements of the corresponding then and
else branches. We also add variables v in test conditions of
each loop statement to every downstream statements to body
of the loop. When a downstream statement is a potential root
cause of the error, so is v. This allows us to potentially identify
buggy if - and loop-conditions.

The potential buggy statements and parts of the specification
that are violated are passed to the next phase for generating
fix candidates.

B. Generating Fix Candidates

In this phase, we first generate semantic fix candidates from
the violated sub-formulas of the specification. We generate two
kinds of semantic fix candidates. If the violated sub-formulas
belong to either preconditions or guards or case blocks,
we generate fix candidates corresponding to expressions of
if statements. Otherwise, we generate fix candidates corre-
sponding to assignment statements. We additionally generate
syntactic candidates by employing various mutations operators
borrowed from GenProg, e.g., append, delete and swap. These
fix candidates are then evolved through genetic programming
to create populations of variants that may contain a valid
repair.



The reason for incorporating syntactic and semantic candi-
dates is that these candidates could help one another in tandem
to condense the search space into more valuable candidates
overall. For example, the search space with syntactic repair
candidates alone is sometimes very sparse [16], and real
fixes could lie beyond the syntactic candidates. Semantic
candidates, however, could cultivate the search space with
more useful candidates. The intuition is that a specification
already captures the primary functionality of a program, and
thus the concrete code extracted from the specification would
help in patching the current buggy implementation of the
program.

C. Validating and Selecting Fix Candidates

In this phase, we validate the variants generated by the
previous phase. We use the HIP/SLEEK system to verify each
of the variants in a modular fashion. We exploit the modularity
of deductive verification to compositionally verify the variants.
Particularly, we only verify the functions that contain suspi-
cious statements discovered by the bug localization phase.

After each candidate has been verified, a fitness score, which
defines how good a repair candidate is, is computed. We define
the fitness score as the number of warnings produced by the
verifier. Better candidates, whose fitness scores are lower, are
selected and carried over to form a new population of mutants
(aka. a new generation). This process is repeated many times
until a valid repair which passes the verification process is
found or when some limits are reached (i.e., the time limit is
reached, or the maximum number of populations is reached).

V. PRELIMINARY EVALUATION

Experimental Setup. We experiment on programs from the
SIR benchmark [2], which has been extensively used in
research in software engineering, particularly by studies that
propose new testing and fault localization approaches, e.g., [5],
[18]. We reused SIR program specifications constructed by Le
et al. [9] and manually injected seeded bugs to the original
programs.

TABLE I
EVALUATION OF OUR PROPOSED APPROACH ON PROGRAMS FROM THE

SIR BENCHMARK WITH MANUALLY SEEDED BUGS.

Program Mutated Location LOC Time Bug Category
uniq gline loop 74 0.5 Incorrect
replace addstr 855 2.8 Missing
replace stclose 855 2.15 Missing
replace stclose 855 2.2 Incorrect
replace locate 855 2.5 Incorrect
replace patsize 855 0.5 Incorrect
replace esc 855 2.14 Incorrect
schedule3 dupp 693 0.43 Incorrect
print tokens ncl 1002 6.25 Missing
tcas2 IBC 302 0.15 Incorrect

Experiment Results. Table I shows experimental results.
In the table, “LOC” column indicates the number of
lines in each program (including specification lines). The
“Mutated Location” column shows the function in which
the bug is seeded. In this column, “dupp” is a short

form of do upgrade process prio, “ncl” is a short form
of numeric case loop and “IBC” is a short form of
Inhibit Biased Climb. The “Time” column captures the time
(in minutes) taken to fix the bug using our approach. The “Bug
Category” column shows the type of the error, either missing
implementation or incorrect implementation. Missing imple-
mentation refers to errors in which necessary statements are
absent from the source code, while incorrect implementation
refers to errors wherein the current source code is incorrectly
implemented with respect to the desired specifications. The
example in listing 1 can be considered as incorrect implemen-
tation error; an example of missing implementation error is
a missing null check when dereferencing pointers. From the
results, we can note that, for all bugs except one, our approach
can successfully fix the bugs in less than 3 minutes. The bug
that took the most time to fix was the print tokens bug which
requires 6.25 minutes.

We also compared our approach against recent state-of-
the-art semantics-based APR, namely Angelix. Experiment
results showed that Angelix can only fix one of those 10
bugs (tcas2). Our observation on the results is that Angelix
by default cannot fix bugs that require adding new statements.
That is, its synthesis engine is geared towards synthesizing
only guards, assignments, if-conditions, and loop-conditions,
and is not able to produce new code out of thin air, e.g.,
inserting new statements. Also, some bugs involve nonlinear
constraints, which are hard for Angelix’s synthesis engine to
solve. Our cultivated search space including both syntactic
and semantic candidates, however, comes in handy here. That
is, our approach can generate candidates that lie beyond the
search space of Angelix, and thus is more likely to be able to
find the correct fixes with the help of the optimization function
which assesses patch suitability by the number of warnings
issued by the underlying verifier. In the future, we expect a
greater success of combining syntactic and semantic repair
candidates, to potentially enhance repair capability of APR
and ensure patch quality.

Threats to Validity. Threats to internal validity relate to errors
in our implementation and experiment. We have put an effort
to ensure that our implementation and experiment are correct,
however, there could be errors that we did not notice. Threats
to external validity relate to the generalizability of our findings.
In our preliminary experiment, we have only evaluated our
approach on 10 buggy programs from SIR benchmark with
specifications constructed by Le et al [9] (a co-author of this
paper). In the future, we plan to reduce this threat to external
validity by evaluating our approach with more programs and
different kinds of bugs. Also, our approach requires complete
specifications in order to completely ensure the soundness
of generated patches. We expect that employing advances
in specification inference and mining could help reduce this
burden [10]. Future work would be to use the history of bug
fixes to mine specifications of past patches and inform the
future patch generation process in a way that generated patches
are likely to conform to desired behaviours.



VI. RELATED WORK

Syntactic-based approaches. Le Goues et al. proposed Gen-
Prog, the first search-based automated patch generator [29],
[14]. To improve GenProg, Weimer et al. proposed a cost
model and used program equivalence to reduce fix search
space [27]. Qi et al. replaced genetic programming with
random search to reduce the number of test case execu-
tions [24]. Kim et al. manually constructed fix templates
learned from many human-written patches [6], and applied
these templates to fix bugs. Long et al. presented Prophet, a
tool that automatically learn from human-written patches to
fix new bugs [17]. Le et al, introduced HDRepair that uses
bug fix history to assess suitability of patches [13].

While the above approaches use dynamic analysis (i.e.,
testing) for detecting/localizing bugs and validating repaired
programs, we use static analysis (i.e., deductive verification).
Furthermore, our approach integrates syntactic and semantic-
based approaches, by combining semantic fix candidates con-
structed by analyzing a program and its specification with
syntactic fix candidates generated by genetic programming.

Semantics-based approaches. AutoFix-E [26], AutoFix-E2
[23] and SemFix [21] rely on testing to localize bugs, inferring
specifications, and generate fixes conforming to inferred spec-
ifications. Logozzo and Ball [15] presented a property-specific
program repair based on abstract interpretation. Recently,
Sergey et al. proposed Angelix – a semantics-based approach
that can generate fixes for many bugs [20].

Like these approaches, we make use of specification and
static analysis technique for automated program repair. Differ-
ent from them, we employ Hoare-style verification combined
with genetic programming to integrate syntactic and semantic-
based approaches.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a novel program repair technique,
which marries the strengths of static verification and genetic
programming, to produce sound repairs. Our approach uses
the structured specification of a program together with genetic
programming to evolve a buggy program until the bugs are
gone. To enhance the efficiency of genetic programming, we
generate high-quality fix candidates which are inferred using
semantic analysis of the program and its specification. We
employ modular deductive verification to generate fix candi-
dates and validate the fixes. We have implemented a prototype
and evaluated it on ten C programs from SIR benchmark with
promising results.

We plan to extend the empirical evaluation of our approach
with additional programs and more bugs of various types.
We also plan to handle programs manipulating complex data
structures, e.g., singly-linked list, binary tree, AVL tree, etc.
We could also employ machine learning techniques to help
traverse the search space of possible candidates, e.g., predict
correct patches among the search space like prediction tasks
proposed in [11], [25]. We also plan to systematically compare
our proposed technique with more APR approaches.
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