An Efficient Algorithm for Learning
Event-Recording Automata

Shang-Wei LIN, Etienne André, Jin Song DONG, Jun SUN, and
Yang LIU

Department of Computer Science
School of Computing
National University of Singapore

October 14, 2011

1/26

Motivation

Why is learning of models important?

» Automatic inference or construction of abstract models

2/26

Outline

The L* Algorithm

Timed Language and Event-Recording Automata

The TL* Algorithm

Conclusion and Future Work

3/26

Outline

The L* Algorithm

4/26

The L* Algorithm

The L* algorithm is a formal method to learn a minimal DFA that
accepts an unknown language U over an alphabet X.

» D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation 75 (1987), no. 2, 87-106.

The L* algorithm interacts with a Minimal Adequate Teacher
» membership query
> Is a string in the unknown language U?
» candidate query

» Does a DFA accept the unknown language U7

5/26

The L* Algorithm (cont.)

The unknown language U= (a| b | c) - a*

A c 5

A 0|1

a 1 0 a, b, c

c 110

a-a |11]0 b, c
a-b [0 |0

a-c |00 @
ab-a |00

ab-b| 0|0 abc
ab-c | 0|0

6/26

Outline

Timed Language and Event-Recording Automata

7/26

Timed Language
Let X be a finite alphabet.

For every symbol (event) a € ¥, we use x, to denote the
event-recording clock of the symbol a

> X, records the time elapsed since the last occurrence of the
symbol a

» We use Cy to denote the set of event-recording clocks over ¥

An atomic clock guard T is an inequation of the form x, ~ n for
X € G, ~e{<,<,>,>},and ne N.
» A clock guard g is a conjunction of atomic clock guards.

» We use Gy to denote the set of clock guards over Cx

A guarded word is a sequence wgy = (a1, g1)(a2,82) - - - (an, &n)
where a; € ¥ for i € {1,2,...,n} and g; € Gx is a clock guard.

8/26

Event-Recording Automata

An event-recording automaton (ERA) D = (X, L, ly, 6, L) consists
of

v

a finite input alphabet ¥

a finite set of locations L

v

v

an initial location Iy € L

a transition function § : L x ¥ x Gy + 2L

v

a set of accepting locations Lf C L

v

Each event-recording clock x, € Cs is implicitly and automatically
reset when a transition with event a is taken.

9/26

Event-Recording Automata (cont.)

An event-recording automaton D = (X, L, I, §, L") is deterministic
if
» §(/,a,g) is a singleton set when it is defined
» if both §(/, a,g1) and 6(/, a, g2) are both defined, then
[la]] N [[g2]] = 0

A guarded word w; = (a1, g1)(a2,82) - - - (an, &n) is accepted by an
ERA D = (%, L, l,0,LF) if

> l; =06(li—1,ai, gi) is defined for all i € {1,2,...,n}
» I, elLf

The timed language accepted by D, denoted by £(D), is the set of
guarded words accepted by D.

10/26

Event-Recording Automata (cont.)

The following ERA A; accepts the timed language
Ur =((a,xs = 1)(a,xa = 3))*

_) alxa = 1]

a[xa = 3]
A

11/26

Outline

The TL* Algorithm

12/26

The TL* Algorithm

The TL* algorithm is a timed extension of the L* algorithm.

The TL* algorithm is a formal method to learn a minimal
event-recording automaton (ERA) that accepts an unknown timed
language Ut over an alphabet X

» We use U to denote the untimed language of Ut

13/26

The TL* Algorithm (cont.)

The TL* algorithm has to interact with a Minimal Adequate
Teacher

» untimed membership query Qm

» Is an untimed word in the unknown untimed language U?
» untimed candidate query Q.

» Does a DFA accept the unknown untimed language U?
» timed membership query QT

» |s a guarded word in the unkown timed language U+7?
» timed candidate query QCT

» Does an ERA accept the unknown timed language Ut?

14 /26

The TL* Algorithm (cont.)

The TL* algorithm consists of two phases
» Untimed Learning Phase

» The L* algorithm is used to learn a DFA M accepting the
untimed language U

» Timed Refinement Phase

» The DFA M is refined into an event-recording automaton
(ERA) by adding time constraints

15/26

The TL* Algorithm (cont.)

input : X: alphabet, Cy: the set of event-recording clocks

output: a deterministic ERA accepting the unknown timed language U

Use L™ to learn a DFA M accepting Untime(UT) ;

Let (S, E, T) be the observation table during the L™ learning process ;

Replace o by («, true), s by (s, true), and e by (e, true) for each o € £, s € S and e € E;
while true do

if QI(M) =1 then return M ;

else

Let (a1, g1)(az, gz) - (an, gn) be the counterexample given by Teacher ;
foreach (a;, g;), i € {1,2,...,n} do

if (aj,g) isa substrmg ofp or e for some p € SU (S -X) and e € E such that
[lgill C [[g]] then
Let G = {g1,€2,...,8m} obtained by [[g]] — [[g]] ;
=3\ {(a;,8)} U{l(ai, &) (ai, €1), (a;, £2), - - -, (a;, 8m)} 5
Split p into {Po, P1, P2, - - -, Pm} Where (a;, g;) is a substring of po and (a;, £;)
is a substring of p; for all j € {1,2,...,m};
Split e into {€p, €1, &, ..., em} where (a;, g;) is a substring of € and (a,-,gj,-)
is a substring of & forallj € {1,2,...,m};
Update T by Qm-,-(ﬁj - &) forallje {0,1,2,...,m};

while there exists (s -) such that s - a # s’ for all s’ € S do
S+—SuU{s-a};
Update T by Q_1((s-) B)forall g €X;
v «— WS5((a1, 81)(a2,82) - - - (an, &n)) ;
if |v| > 0 then
E «+— EU{v};
Update T by Q_r(s-v)and Q t(s-a-v)foralls€ SandaeXx;

Construct candidate M from (S, E, T) ;

16 /26

An Example

Suppose Ur = ((a,x; = 1)(a,x, = 3))" is the timed language to
be learned.

Untimed Learning Phase

A | A
A 1 (So) A 1 (50)
a |l —> (a,true) | 1
(@) Th

(c) T2

L(My) = U= a"

17/26

An Example (cont.)

Q[(M) = 0 with a negative counterexample (a, x, < 1)

Timed Refinement 1

A
| A A ‘ 1 (s0)
A 1 (so) (a,xa < 1) 0 (s1)
(a,xa<1) | O (a,xa >1) 0
(a,xa>1) | O (a,xa <1)(a,xa<1) | O
(a) T3 (a,xa<1)(a,xa>1) | O
(b) T4
a
nOn @)
(C) Mz

18/26

An Example (cont.)

Q[(M) = 0 with a positive counterexample (a, x, = 1)

Timed Refinement 2

A
(a,xa < 1)
(az)(a = 1)
(a,xa > 1)
(a,xa < 1)(a,xa < 1)
(a,xa < 1)(a,xa = 1)
(a,xa < 1)(a,xa > 1)

(a) Ts

8
S

a[xa = 1] a

_)8 alxa # 1] é))

(b) M5

—~—
0
et
~

OO OO O H»

19/26

An Example (cont.)

Q[(Ms3) = 0 with a negative counterexample (a,x, = 1)(a, x, = 1)

A suffix (a, x; = 1) shows that A and (a, x, = 1) should not be in
the same class

Timed Refinement 3

A (a,xa = 1)
o — A 1 1 (so)
A | i | g.aisoa) L ((a,xa < ;-)) (1) g ESI;
a,xXg = s;

ot N e SN ER
SR INHE ety |88
adERcy oo (250 < laza > 1) | 0 | 0
(a,xa <1)(a,xa>1) | 0 | 0 EZZ - 1))((22 = 1)) oo
(a) Te (a,xa =1)(a,xa>1) | O | O

(b) T7
alxa # 1]

20/26

An Example (cont.)
Q[(My) = 0 with a positive counterexample (a, x, = 1)(a, x, = 3)

Timed Refinement 4

0
&
I

=

A
(a,xa < 1)
(= 1)
(a,1 < xa < 3)
(a,xa = 3)
(a,xa > 3)

(a,xa < 1)(a,xa < 1)
(a;xa < 1)(a,xa =1)
(a,xa < 1)(a,1 < x5 < 3)
(2, xa < 1)(a,xa = 3)
(a,xa < 1)(a, xa > 3)
(a,xa =1)(a,xa < 1)
(a,xa =1)(a, xa = 1)
(a,xa =1)(a,1 < x5 < 3)
(a, xa = 1)(a, xa = 3)
(a,xa = 1)(a, xa > 3)

(a) Te

alxa # 1]

=R NeNeleNeNeNeNeNeNeNeRel el BV

=R NeNeleNeoNeNeNeNeNeNeNeNeRNol

21/26

An Example (cont.)

QI (Ms) =1, i.e., L(Ms) = Ur

The learning process of TL* is finished

22/26

Analysis of TL*

Given a timed language Ut accepted by an ERA
A= (%, L l,o,L), the TL* algorithm needs to perform

» O(|Z| - |Ga| - |L|? + |L|log |7|) timed membership queries

» 7 is the counterexample given by Teacher
» G4 is the set of clock zones partitioned by the clock guards
appearing in A

» O(|L| + |X| - |G4l) timed candidate queries

Grinchtein's TL;, needs O(|x x Gg| - n?|x| - \W](‘ZHK)) timed
membership queries

» nis the number of locations of the learned ERA

» w is the longest guarded word queried

» K is the largest constant appearing in the clock guards

23/26

Analysis of TL* (cont.)

Theorem
The TL* algorithm is correct.

Theorem
The TL* algorithm terminates.

Theorem

Assume the observation table (S, E, T) is closed and consistent
and M = (Z,L,1°, 6, L") is the ERA constructed from the
observation table (S, E, T). If M' = (X,1,19,8', L") is any other
ERA consistent with T, then M’ has at least |L| locations.

24 /26

Outline

Conclusion and Future Work

25 /26

Conclusion and Future Work

Conclusion
» We proposed an efficient polynomial time algorithm, TLx, for
learning event-recording automata (ERA).
» The TL* algorithm has been implemented in the PAT model
checker.

Future Work
» To extend the TL* algorithm to learn other subclasses of
timed automata
» To automate assume-guarantee reasoning (AGR) for timed
systems, we plan to use TL* to automatically generate timed
assumptions needed for AGR.

26 /26

	The L* Algorithm
	Timed Language and Event-Recording Automata
	The TL* Algorithm
	Conclusion and Future Work

