
An Efficient Algorithm for Learning
Event-Recording Automata

Shang-Wei LIN, Étienne André, Jin Song DONG, Jun SUN, and
Yang LIU

Department of Computer Science
School of Computing

National University of Singapore

October 14, 2011

1 / 26

Motivation

Why is learning of models important?
I Automatic inference or construction of abstract models

2 / 26

Outline

The L∗ Algorithm

Timed Language and Event-Recording Automata

The TL∗ Algorithm

Conclusion and Future Work

3 / 26

Outline

The L∗ Algorithm

Timed Language and Event-Recording Automata

The TL∗ Algorithm

Conclusion and Future Work

4 / 26

The L∗ Algorithm

The L∗ algorithm is a formal method to learn a minimal DFA that
accepts an unknown language U over an alphabet Σ.

I D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation 75 (1987), no. 2, 87-106.

The L∗ algorithm interacts with a Minimal Adequate Teacher
I membership query

I Is a string in the unknown language U?

I candidate query
I Does a DFA accept the unknown language U?

5 / 26

The L∗ Algorithm (cont.)

The unknown language U = (a | b | c) · a∗

λ c
λ 0 1
a 1 0
b 1 0
c 1 0

a · a 1 0
a · b 0 0
a · c 0 0
ab · a 0 0
ab · b 0 0
ab · c 0 0

01 10

00

a, b, c

a

b, c

a, b, c

6 / 26

Outline

The L∗ Algorithm

Timed Language and Event-Recording Automata

The TL∗ Algorithm

Conclusion and Future Work

7 / 26

Timed Language

Let Σ be a finite alphabet.

For every symbol (event) a ∈ Σ, we use xa to denote the
event-recording clock of the symbol a

I xa records the time elapsed since the last occurrence of the
symbol a

I We use CΣ to denote the set of event-recording clocks over Σ

An atomic clock guard τ is an inequation of the form xa ∼ n for
xa ∈ CΣ, ∼∈ {<,≤, >,≥}, and n ∈ N.

I A clock guard g is a conjunction of atomic clock guards.
I We use GΣ to denote the set of clock guards over CΣ

A guarded word is a sequence wg = (a1, g1)(a2, g2) · · · (an, gn)
where ai ∈ Σ for i ∈ {1, 2, . . . , n} and gi ∈ GΣ is a clock guard.

8 / 26

Event-Recording Automata

An event-recording automaton (ERA) D = (Σ, L, l0, δ, Lf) consists
of

I a finite input alphabet Σ

I a finite set of locations L
I an initial location l0 ∈ L
I a transition function δ : L× Σ× GΣ 7→ 2L

I a set of accepting locations Lf ⊆ L

Each event-recording clock xa ∈ CΣ is implicitly and automatically
reset when a transition with event a is taken.

9 / 26

Event-Recording Automata (cont.)

An event-recording automaton D = (Σ, L, l0, δ, Lf) is deterministic
if

I δ(l , a, g) is a singleton set when it is defined
I if both δ(l , a, g1) and δ(l , a, g2) are both defined, then

[[g1]] ∩ [[g2]] = ∅

A guarded word wg = (a1, g1)(a2, g2) · · · (an, gn) is accepted by an
ERA D = (Σ, L, l0, δ, Lf) if

I li = δ(li−1, ai , gi) is defined for all i ∈ {1, 2, . . . , n}
I ln ∈ Lf

The timed language accepted by D, denoted by L(D), is the set of
guarded words accepted by D.

10 / 26

Event-Recording Automata (cont.)

The following ERA A1 accepts the timed language
UT = ((a, xa = 1)(a, xa = 3))∗

l1 l2
a[xa = 1]

a[xa = 3]

A1

11 / 26

Outline

The L∗ Algorithm

Timed Language and Event-Recording Automata

The TL∗ Algorithm

Conclusion and Future Work

12 / 26

The TL∗ Algorithm

The TL∗ algorithm is a timed extension of the L∗ algorithm.

The TL∗ algorithm is a formal method to learn a minimal
event-recording automaton (ERA) that accepts an unknown timed
language UT over an alphabet Σ

I We use U to denote the untimed language of UT

13 / 26

The TL∗ Algorithm (cont.)

The TL∗ algorithm has to interact with a Minimal Adequate
Teacher

I untimed membership query Qm

I Is an untimed word in the unknown untimed language U?

I untimed candidate query Qc

I Does a DFA accept the unknown untimed language U?

I timed membership query QT
m

I Is a guarded word in the unkown timed language UT ?

I timed candidate query QT
c

I Does an ERA accept the unknown timed language UT ?

14 / 26

The TL∗ Algorithm (cont.)

The TL∗ algorithm consists of two phases
I Untimed Learning Phase

I The L∗ algorithm is used to learn a DFA M accepting the
untimed language U

I Timed Refinement Phase
I The DFA M is refined into an event-recording automaton

(ERA) by adding time constraints

15 / 26

The TL∗ Algorithm (cont.)
input : Σ: alphabet, CΣ: the set of event-recording clocks
output: a deterministic ERA accepting the unknown timed language UT
Use L∗ to learn a DFA M accepting Untime(UT) ;
Let (S,E ,T) be the observation table during the L∗ learning process ;
Replace α by (α, true), s by (s, true), and e by (e, true) for each α ∈ Σ, s ∈ S and e ∈ E ;
while true do

if QT
c (M) = 1 then return M ;

else
Let (a1, g1)(a2, g2) · · · (an, gn) be the counterexample given by Teacher ;
foreach (ai , gi), i ∈ {1, 2, . . . , n} do

if (ai , g) is a substring of p or e for some p ∈ S ∪ (S · Σ) and e ∈ E such that
[[gi]] ⊂ [[g]] then

Let G = {ĝ1, ĝ2, . . . , ˆgm} obtained by [[g]]− [[gi]] ;
Σ = Σ \ {(ai , g)} ∪ {(ai , gi), (ai , ĝ1), (ai , ĝ2), . . . , (ai , ˆgm)} ;
Split p into {p̂0, p̂1, p̂2, . . . , ˆpm} where (ai , gi) is a substring of p̂0 and (ai , ĝj)

is a substring of p̂j for all j ∈ {1, 2, . . . ,m} ;
Split e into {ê0, ê1, ê2, . . . , ˆem} where (ai , gi) is a substring of ê0 and (ai , ĝj)

is a substring of êj for all j ∈ {1, 2, . . . ,m} ;
Update T by QmT (p̂j · êj) for all j ∈ {0, 1, 2, . . . ,m} ;

while there exists (s · α) such that s · α 6≡ s′ for all s′ ∈ S do
S ←− S ∪ {s · α} ;
Update T by QmT ((s · α) · β) for all β ∈ Σ ;

v ←− WS((a1, g1)(a2, g2) · · · (an, gn)) ;
if |v| > 0 then

E ←− E ∪ {v} ;
Update T by QmT (s · v) and QmT (s · α · v) for all s ∈ S and α ∈ Σ ;

Construct candidate M from (S,E ,T) ;

16 / 26

An Example

Suppose UT = ((a, xa = 1)(a, xa = 3))∗ is the timed language to
be learned.

Untimed Learning Phase

λ
λ 1 (s0)
a 1

(a) T1

1

a

(b) M1

λ
λ 1 (s0)

(a, true) 1

(c) T2

L(M1) = U = a∗

17 / 26

An Example (cont.)

QT
c (M1) = 0 with a negative counterexample (a, xa < 1)

Timed Refinement 1

λ
λ 1 (s0)

(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1 0
a

a

(c) M2

18 / 26

An Example (cont.)

QT
c (M2) = 0 with a positive counterexample (a, xa = 1)

Timed Refinement 2

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa 6= 1]

a

(b) M3

19 / 26

An Example (cont.)
QT

c (M3) = 0 with a negative counterexample (a, xa = 1)(a, xa = 1)

A suffix (a, xa = 1) shows that λ and (a, xa = 1) should not be in
the same class

Timed Refinement 3
λ (a, xa = 1)

λ 1 1 (s0)
(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0

(a) T6

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10 00
a[xa = 1] a

a[xa 6= 1]
a

(c) M4

20 / 26

An Example (cont.)

QT
c (M4) = 0 with a positive counterexample (a, xa = 1)(a, xa = 3)

Timed Refinement 4

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10 00
a[xa = 1] a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b) M5

21 / 26

An Example (cont.)

QT
c (M5) = 1, i.e., L(M5) = UT

The learning process of TL∗ is finished

22 / 26

Analysis of TL∗

Given a timed language UT accepted by an ERA
A = (Σ, L, l0, δ, Lf), the TL∗ algorithm needs to perform

I O(|Σ| · |GA| · |L|2 + |L| log |π|) timed membership queries
I π is the counterexample given by Teacher
I GA is the set of clock zones partitioned by the clock guards

appearing in A

I O(|L|+ |Σ| · |GA|) timed candidate queries

Grinchtein’s TL∗sg needs O(|Σ× GΣ| · n2|π| · |w |
(|Σ|+K
|Σ|

)
) timed

membership queries
I n is the number of locations of the learned ERA
I w is the longest guarded word queried
I K is the largest constant appearing in the clock guards

23 / 26

Analysis of TL∗ (cont.)

Theorem
The TL∗ algorithm is correct.

Theorem
The TL∗ algorithm terminates.

Theorem
Assume the observation table (S ,E ,T) is closed and consistent
and M = (Σ, L, l0, δ, Lf) is the ERA constructed from the
observation table (S ,E ,T). If M ′ = (Σ, L′, l0

′
, δ′, Lf ′) is any other

ERA consistent with T , then M ′ has at least |L| locations.

24 / 26

Outline

The L∗ Algorithm

Timed Language and Event-Recording Automata

The TL∗ Algorithm

Conclusion and Future Work

25 / 26

Conclusion and Future Work

Conclusion
I We proposed an efficient polynomial time algorithm, TL∗, for

learning event-recording automata (ERA).
I The TL∗ algorithm has been implemented in the PAT model

checker.

Future Work
I To extend the TL∗ algorithm to learn other subclasses of

timed automata
I To automate assume-guarantee reasoning (AGR) for timed

systems, we plan to use TL∗ to automatically generate timed
assumptions needed for AGR.

26 / 26

	The L* Algorithm
	Timed Language and Event-Recording Automata
	The TL* Algorithm
	Conclusion and Future Work

