Developing Model Checkers Using PAT

Yang Liu and Jun Sun and Jin Song Dong

School of Computing
National University of Singapore
{l'i uyang, sunj , dongj s}@onp. nus. edu. sg

Abstract. During the last two decades, model checking has emergedeiffean
tive system analysis technique complementary to simuladind testing. Many
model checking algorithms and state space reduction tgeasihave been pro-
posed. Although it is desirable to have dedicated modelkehsdor every lan-
guage (or application domain), implementing one with dffecreduction tech-
niques is rather challenging. In this work, we present a gerad extensible
framework PAT, which facilitates users to build customineddel checkers. PAT
provides a library of state-of-art model checking algarithas well as support
for customizing language syntax, semantics, state spatetien techniques,
graphic user interfaces, and even domain specific abstratthniques. Based
on this design, model checkers for concurrent systemstiraalsystems, prob-
abilistic systems and Web Services are developed insidéAieframework,
which demonstrates the practicality and scalability of approach.

1 Introduction

After two decades’ development, model checking has emexgagromising and pow-
erful approach for automatic verification of hardware arftigare systems. It has been
used successfully in practice to verify complex circuitigag3], communication pro-
tocols [5] and driver software [2]. Till now, model checkihgs become a wide area
including many different model checking algorithms catgrfor different properties
(e.g., explicitly model checking, symbolic model checkipgobabilistic model check-
ing, etc.) and state space reduction techniques (e.gialparder reduction, binary de-
cision diagrams, abstraction, symmetry reduction, etc.).

Unfortunately, several reasons prevent many domain expgho may not be ex-
perts in the area of model checking, from successfully apglsnodel checking to their
application domains. Firstly, it is nontrivial for a domadrpert to learn a general pur
pose model checker (e.g., NuSMV [3], SPIN [5] and so on). 8dpgeneral purpose
model checkers may be inefficient (or insufficient) to modaindin specific applica-
tions, due to lack of language features, semantic modelatarsiructures. For example,
multi-party barrier synchronization or broadcasting ificlilt to achieve in the SPIN
model checker. Lastly, the level of knowledge and effortuiegfd to create a model
checker for a specific domain is even higher than applyingtiexj ones.

To meet the challenges of applying model checking in newiegibn domains, we
propose a generic and extensible framework called PAT @Analysis Toolkit) [1],
which facilitates effective incorporation of domain knedte with formal verification

Distributed Algorithms, Web Services, Bio-systems, Security Protocols, Sensor Networks, etc.

) T T T T
Module Module

Modeling

)
o : : Domain-specific Abstraction: data abstraction, zone abstraction, environment abstraction, etc. 11
= L ______________________
a
| oy
8 I : Labeled Transition System : 1
L. T Li
Qk NRZ

System
Analysis

Reachability Analysis, LTL Model Checking, Refinement
Checking, Probabilistic Model Checking, etc. counterexamle { Simulator

Fig. 1. PAT Architecture

using model checking techniques. PAT is a self-containedt@mment to support com-
posing, simulating and reasoning of system models. It conisuser friendly inter-
faces, a featured model editor and an animated simulatast Myportantly, PAT imple-
ments a library of model checking techniques catering fecking deadlock-freeness,
divergence-freeness, reachability, LTL properties wihrfess assumptions [13], re-
finement checking [11] and probabilistic model checkingv&aced optimization tech-
niques are implemented in PAT, e.g., partial order redacfwocess counter abstrac-
tion [16], bounded model checking [14], parallel model dtieg [8] and probabilistic
model checking. PAT supports both explicit state model kimgcand symbolic model
checking (based on BDD or SAT solver). We have used PAT to fraodteverify a vari-
ety of systems [6]. Previously unknown bugs have been deea\7]. The experiment
results show that PAT is capable of verifying systems witigjdanumber of states and
outperforms the state-of-the-art model checkers in sorsesca

2 Architecture Overview

PAT was initially designed to support a unified way of mode¢aking under fair-
ness [13]. Since then, PAT has been extended significandlg@ampletely re-designed.
We have adopted a layered design to support analysis ofeliffesystems/languages,
which can be implemented as plug-in modules. Fig. 1 showstbkitecture design
of PAT. For each supported domain (e.g., distributed systeai-time system, service
oriented computing and so on), a dedicated module is créatedT, which identifies
the (specialized) language syntax, well-formness ruleaelsas formal operational
semantics. For instance, the CSP module is developed faarthlysis of concurrent
system modeled in CSP# [12]. The operational semanticsedfattyet language trans-
lates the behavior of a model into LTS (Labeled Transitiost&ys) at runtime. LTS
serves as an implicitly shared internal representatiomefitput models, which can
be automatically explored by the verification algorithmsised for simulation. To per-
form model checking on LTSs, the number of states in the LTe®sla to be finite. For
systems with infinite behavior (e.g., real time clocks omité number of processes),

! To be precise, it is a Markov Decision Process when prolsaigilchoices are involved.

abstraction techniques are needed. Examples of abstraetibniques include data ab-
straction, process counter abstraction, clock zone atitra environment abstraction,
etc. The verification algorithms perform on-the-fly exptaa of the LTSs. If a coun-
terexample is identified during the exploration, then it baranimated in the simulator.
This design allows new modules to easily be plugged in angdvathiiout recompiling
the core system, and the developed model checking algaithrantioned in Section
1) to be shared by all modules. This design achiexmsible architecture as well as
module encapsulation. We have successfully applied this framework in developroén
four different modules, each of which targets a differemhdn. 1). The concurrent sys-
tem module is designed for analyzing general concurretésysusing a rich modeling
language CSP# [12], which combines high-level modelingatpes with programmer-
favored low-level features. 2). The real-time system medulpports analysis of real-
time systems with compositional behavioral patterns (8@cout, deadline) [15].
Instead of explicitly manipulating clock variables, timeated constructs are designed
to build on implicit clocks and discretized using clock zatestraction [15]. 3). The
Web Services (WS) module offers practical solutions to tire@rmance checking and
prototype synthesis between WS Choreography and WS Oraliest 4). The proba-
bilistic module supports the modeling and verification afteyns exhibiting random or
probabilistic behavior.

3 Manufacturing Model Checkers

In this section, we discuss how to create a customized mbeeker for a new domain
using the PAT framework with the help of its predefined APisraples and software
packages. A domain often has its specific model descriptinguage. It is desirable
that the domain experts can input their models using their mmguages. There are
three different ways of supporting a new language in PAT.

— The easiest way is to create a syntax rewriter from the dosyécific language
to an existing language. This is only recommended if the dohaaguage is less
expressiveness than the existing languages. For exampleave developed trans-
lators from Promela/UML state diagram to CSP#. Comparirth ather tools, pro-
gramming a translator is straightforward in PAT. Becaus€& RAs open APIs for
its language constructs, users only need to generate thedge constructs objects
using these APIs, which can guarantee that the generatéakdgrcorrect. This ap-
proach is simple and requires little interaction with PAHes. However, translation
may not be optimal if special domain specific language festare present. Fur-
thermore, reflecting analysis results back to the domainakisaften non-trivial.

— The second way is to extend an existing module if the inpujlages are similar
and yet with a few specialized features. For example, thbahitistic module is
designed to extend the concurrent system module with onii@ua language
feature, i.e., probabilistic choices. Knowledge aboustxg modules is required
and a new parser may be created for the extended languageefeat

— The third way is to create a new module in PAT. In this casersufsestly need to
develop a parser according to the syntax. The parser sheaktgte a model con-

sisting of ASTs of language construct classes, which entioele operational se-

mantics. Abstract classefor system states, language construct classes and system

model are pre-defined in PAT with (abstract) signature natifor communica-
tions with verification algorithms and user interface iatgions. Users only need to
develop concrete classes in the new module by inheritingliséract classes. This
approach is the most complicated compared with the first Nevertheless, this
approach gives the most flexibility and efficiency. It is diffit to quantify the ef-
fort required to build a high-quality module in PAT. Expetoes suggest that a new
module can be developed in months or even weeks in our teaim approach is
feasible for domain experts who have only the basic knowdedgmodel checking.
This is because model checking algorithms and state spaaetien techniques are
separated from the syntax and semantics of the modeling#®

It is possible that a domain may have its own specializedgnt@s to verify and spec-
ified model checking algorithms. Our design allows searmitgsgration of new model
checking algorithm and optimization techniques by inlirgibase assertion class and
implementing its API. Furthermore, supporting functiolilse LTL to Biichi, Rabin,
Streett automata conversion, are provided in PAT to easdatelopment of new al-
gorithms. For instance, we have successfully developedltiwithms for divergence
checking, timed refinement checking in real-time system ul®dnd new deadlock
and probabilistic reachability checking. FurthermoreT PAcilitates customized state
encoding by defining the interfaces methods in system sliade.Different verification
algorithms using different state encoding are developedre®tly, PAT supports ex-
plicitly state encoding using hash table and symbolic siypeesentation using BDD.
The choice of the encoding is made by the users in the usefaogeat runtime.

4 Performance Evaluation

PAT is capable of verifying systems with large number ofegaind outperforms the
state-of-the-art model checkers in some cases. Experairestilts for LTL verification
under fairness and refinement checking are presented ir2 Eig.an indication of our
effort on optimizing the model checking algorithms.

The table on the left shows the verification results on rdgedaveloped leader
election protocols with different topologies, where thereotness (modeled using LTL
formula) of these protocols requires different notionsaifrfess. Firstly, PAT usually
finds counterexamples quickly. Secondly, verification uredent-level strong fairness
(ESF) is more expensive than verification with no fair, edemel weak fairness (EWF)
or strong global fairness (SGF). Lastly, PAT outperformsN\&for the fairness veri-
fications. SPIN increases the verification time under weakdas by a factor that is
linear in the number of processes. SPIN has no support fungfairness or SGF. PAT
offers comparably better performance on verification ungeak fairness and makes it
feasible to verify under strong fairness or SGF.

In addition to temporal logic verification, PAT offers cajdp of refinement check-
ing (i.e. language inclusion checking). The table on thbtrépows the performance us-

2 Detailed explanation and usages of the abstract classesaitable in PAT’s user manual.

Model |Sizeg EWF ESF SGF Models N | Property [Result PAT [FDR
Res| PAT |SPIN|Res| PAT |Res| PAT Dining Philosophers | 6 |P refines $ true | 0.86|0.07|
LE_C | 5 |Yes| 4.7 [35.7| Yes| 4.7 | Yes| 4.1 Dining Philosophers | 8 |P refines $ true | 13.7|0.07|
LE_C | 6 |Yes|26.7] 229 | Yes| 26.7| Yes| 23.5 Dining Philosophers | 10 |P refines $ true | 430[0.11]
LE_C | 7 |Yes| 152[1190| Yes| 152 | Yes| 137 Reader/Writers 12 |P refines $ true | < 1{0.81
LE_C | 8 |Yes| 726 |5720| Yes| 739 | Yes| 673 Reader/Writers 14 |P refines $ true | < 1{6.91
LET | 7 |Yes| 1.4]| 7.6 |Yes| 1.4 |Yes| 1.4 Reader/Writers 16 |P refines $ true | < 1[81.2
LET | 9 |Yes|10.2|62.3| Yes| 10.2| Yes| 9.6 Reader/Writers 200|P refines $ true | 77.5 -
LET | 11|Yes|68.1]| 440 | Yes| 68.7| Yes| 65.1| [Milner’s Cyclic Scheduler11 [P refines $ true | < 1[89.4]
LET | 13| Yes| 548 |3200| Yes| 573 | Yes| 529 | |Milner's Cyclic Scheduler12 |P refines $ true | < 1| 419
LE_OR| 3 |[No| 0.2| 0.3]|No| 0.2 |Yes|11.8| |Milner's Cyclic Scheduler13 |P refines $ true | < 1| -
LEOR| 5 |No|13|87|No| 18] - - Milner’s Cyclic Schedulg200] P [T=S | true [60.4] -
LE_OR| 7 [No|[15.9] 95 | No|21.3] - - 5-valuedregister 2 |Prefines $ true [44.9] NA
LE_R | 4 |[No| 0.3]|<0.1No| 0.7 |Yes|19.5 6-valuedregister 2 |Prefines $ true | 297 NA
LE_R | 5 |No| 0.8|<0.1 No| 2.7 | Yes| 299 stack of size 14 2 |Prefines $ true [99.4] NA
LE_R| 6 |No[18]|02|No| 46| - - stack of size 2 3 |Prefines $ true (4321 NA
LER| 7 |No[47]|06|No| 96| - - buggy queue of size 10 | 2 |P refines $ false | 6.87| NA
LE_R | 8 |[No[11.7] 1.7 [No|28.3| - - buggy queue of size 20 | 2 |P refines $false|41.1| NA
TC_R | 3 |Yes|<0.1]<0.1] Yes|<0.1| Yes|<0.1] | mailbox of 3 operations| 2 |P refines $ true [27.8] NA
TC_R | 5 [No[<0.1/<0.1] No [<0.1] Yes| 0.6 mailbox of 4 operations| 2 |P refines $ true | 954 | NA
TC_.R | 7 |No| 02| 01]|No| 0.2]|Yes|13.7 NZI of size 2 2 |Prefines $ true | 322 NA
TC_.R | 9 [No| 0.4 0.2|No| 0.4]Yes| 640 NZI of size 3 3 |Prefines $ true (6214 NA

Fig. 2. Experiment results on LTL verification under fairness agstion and refinement checking

ing benchmark systems as well as newly developed conclalgmtithms. In the clas-
sic readers/writers problem, reduction in PAT is very dffecso that PAT can handle
a few hundreds readers/writers. In the Milner’s cyclic sitimg algorithm, multiple

processes are scheduled in a cyclic fashion. PAT is efiedtiv this model to handle
hundreds of processes. For models with complicated daiables (like scalable non-
zero indicator SNZI, see [6] for the details of the exampl®&)T is able to show the
linearizability of these examples using refinement chegléj. FDR [10] performs ex-

tremely well for Dining Philosophers because of the congicesstrategy developed
for some specialized models. For other examples, PAT is rfagthr than FDR. Lim-

ited by the modeling language, FDR is rather difficult to matistributed systems like
Stack, mailbox and SNZI. In addition, PAT supports timedmerfinent checking, which
is beyond existing refinement checkers. In summary, PATreHeset of well-optimized
model checking languages as well as a framework for devegopéw model checkers.

5 Discussion and Summary

As a temporal logic model checker, PAT is related to the tdikés NuSMV [3] and
SPIN [5]. Compared to these tools, PAT serves a generic framefor manufacturing
model checkers. It complements existing model checkels syiecialized algorithms
for (timed/untimed) refinement checking [11], verificationder fairness constraints
(with counter abstraction [16]), etc. PAT has a compargtedormance with existing
state-of-art tools, and even out-performs them on somescBsgor [4] and LTSA [9]
are two extensible model checker developed as a plug-inlgfdec Bogor allows users
to extend the base language to support new language fedtutesannot be fully cus-
tomized with desired syntax and semantic models. LTSA ctagphe input language
FSP (based on Process Algebra) into LTS, which is similarXb Plowever all the
modules in LTSA adopt the translation approach to converirthut model (e.g., Mes-
sage Sequence Chart and Web Service) into FSP models. Gaavpidin these two, our

approach takes one step further to allow the developmentliyf dustomized model
checkers. Furthermore, the supported libraries in PATrofer advanced model check-
ing techniques like real-time verification and probahiishodel checking, which are
absent in Bogor and LTSA.

Compared to [13], we redesigned the system to separate thev&lification algo-
rithms and modeling languages. Each modeling languagecepsalated into a stand-
alone package, which makes the system extensible. Furtiermwe have added the
support for real-time and probabilistic systems. The enbarent is dramatic. Starting
from 2007, PAT has come to a stable stage with solid testiigvanious applications.
More than 60 built-in examples and hundreds of test casesmbedded in PAT. PAT
has been used by a number of institutions as a research oatexhat tool. The main
objective of PAT is to bring sophisticated model checkinghtéques to a variety of
domains. The existing modules and on-going modules undei@ement have shown
the usefulness and feasibility of this framework.

References

1. PAT: Process Analysis Toolkit. http://pat.comp.nus.ed/.

2. T.Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and &tddriver Verifier: Technology
Transfer of Formal Methods inside Microsoft. lIRM 2004, pages 1-20. Springer, 2004.

3. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchigli®]. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for SptitbModel Checking. In
CAV 2002, pages 359-364, 2002.

4. M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Buildingo¥r Own Software Model
Checker Using the Bogor Extensible Model Checking Framkwdn CAV 2005, pages
148-152, 2005.

5. G. J. HolzmannThe SPIN Model Checker: Primer and Reference Manual. Wiley, 2003.

6. Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model Checking Linidility via Refinement. In
FM 2009, pages 321-337, 2009.

7. Y. Liu, J. Pang, J. Sun, and J. Zhao. Efficient VerificatibPopulation Ring Protocols in
PAT. In TASE 2009, pages 81-89, 2009.

8. Y. Liu, J. Sun, and J. S. Dong. Scalable Multi-Core Modek€King Fairness Enhanced
Systems. INCFEM 2009, pages 426—-445, Dec 2009.

9. J. Magee and J. KrameZoncurrency: Sate Models & Java Programs. Wiley, 1999.

10. A. W. Roscoe. Model-checking CSRclassical mind: essaysin honour of C. A. R. Hoare,
pages 353-378, 1994.

11. J. Sun, Y. Liu, and J. S. Dong. Model Checking CSP Reuwsltgroducing a Process Anal-
ysis Toolkit. InISoLA 2008, pages 307—322. Springer, 2008.

12. J.Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating fipation and Programs for System
Modeling and Verification. IIMASE 2009, pages 127-135. IEEE Computer Society, 2009.

13. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Hiexibrification under Fairness.
In CAV 2009, pages 702-708, Grenoble, France, June 2009.

14. J.Sun,Y. Liu, J. S. Dong, and J. Sun. Bounded Model ChgaliCompositional Processes.
In TASE 2008, pages 23—-30. IEEE Computer Society, 2008.

15. J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Verifying Statdimed CSP using Implicit
Clocks and Zone Abstraction. I€FEM 2009, pages 581-600, Dec 2009.

16. J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong.r K&del Checking of Parame-
terized Systems. IRM 2009, pages 123-139, 2009.

