
Probabilistic Model Checking Multi-agent
Behaviors in Dispersion Games Using Counter

Abstraction

Jianye Hao1, Songzheng Song2, Yang Liu2, Jun Sun3,
Lin Gui2, Jin Song Dong2, and Ho-fung Leung1

1 The Chinese University of Hong Kong
{jyhao,lhf}@cse.cuhk.edu.hk

2 National University of Singapore
{songsongzheng,tslliuya,lin.gui,dongjs.comp}@nus.edu.sg

3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Accurate analysis of the stochastic dynamics of multi-agent
system is important but challenging. Probabilistic model checking, a for-
mal technique for analysing a system which exhibits stochastic behaviors,
can be a natural solution to analyse multi-agent systems. In this paper,
we investigate this problem in the context of dispersion games focus-
ing on two strategies: basic simple strategy (BSS) and extended simple
strategies (ESS). We model the system using discrete-time Markov chain
(DTMC) and reduce the state space of the models by applying counter
abstraction technique. Two important properties of the system are con-
sidered: convergence and convergence rate. We show that these kinds of
properties can be automatically analysed and verified using probabilis-
tic model checking techniques. Better understanding of the dynamics of
the strategies can be obtained compared with empirical evaluations in
previous work. Through the analysis, we are able to demonstrate that
probabilistic model checking technique is applicable, and indeed useful
for automatic analysis and verification of multi-agent dynamics.

1 Introduction

Multi-agent learning is an important research area which has been applied in
a wide range of practical domains [15, 28]. Because of the coexistence of multi-
ple learners, a multi-agent system usually exhibits stochastic and unpredictable
behaviors, which can be quite complex and difficult to analyse. To have a bet-
ter understanding of the system’s dynamics and further optimize the system’s
performance, an accurate analysis of the system’s behavior beforehand becomes
particularly important.

Most of the existing work on analysing such systems is based on extensive
simulations [22, 6], which is the most convenient approach to take. The disad-
vantage of this approach is that the simulation results are usually inaccurate
and also some important properties of the system (e.g., convergence) cannot
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be directly proved [22]. Another line of research is to analyse the system’s be-
havior theoretically through the construction of a mathematical model of the
system [25, 9, 24]. This approach has its merits in that it can give a better un-
derstanding of the system’s dynamics than simulation-based approach and also
the properties of the system can be proved directly. The downside is that the
proof construction is in general quite tedious and usually requires a good deal
of ingenuity. Moreover, in some cases, the system may be too complex such that
it is impossible to construct an accurate mathematical model.

To tackle the problems in these existing approaches, we propose using prob-
abilistic model checking techniques [2] to analyse the behavior of a multi-learner
system. Probabilistic model checking is a formal verification technique for analysing
a system exhibiting stochastic behaviors, which makes it naturally suitable for
the analysis of multi-learner systems. In probabilistic model checking, a proba-
bilistic model (e.g., Markov decision process (MDP)) of the system’s behavior
is constructed first, and then a quantitative analysis of the model is performed,
by applying a combination of exhaustive search and numerical solution meth-
ods. This approach is different from both simulation and mathematical analysis
techniques. It is not only automatic as simulation technique does, but also pro-
vides exact rather than approximated analysis results, since it takes all possible
behaviors that the system may exhibit into consideration.

To make the discussion concrete, in this paper, we focus on an important
type of scenario modeled as dispersion games [22]. Dispersion games are the
generalization of anti-coordination games to an arbitrary number of players and
actions. This class of games has received wide attentions and they have been
applied to model a variety of practical applications, e.g., load balancing prob-
lems [28], and niche selection in economics such as Santa Fe bar problem [4]
and minority games [7]. We focus on two novel strategies designed for dispersion
games: basic simple strategy (BSS) and extended simple strategy (ESS). Previous
work [22, 1] has investigated the performance of both strategies through exten-
sive simulations and shown the convergence to an Maximal Dispersion Outcome
(MDO). However, only preliminary analytical results have been provided for the
analysis of both strategies, and it is particularly difficult to give very accurate
analytical results.

In this work, we investigate how probabilistic model checking can be used
to analyse the behaviors of the agents under the two strategies (BSS and ESS)
in the context of dispersion games in an accurate and automatic way. The dy-
namics of the agents under both strategies in dispersion games are modeled as
discrete-time Markov chains (DTMCs). Since the agents always adopt the same
strategy and thus exhibit similar behaviors, we propose to adopt process counter
abstraction technique to reduce the state space of the model. Process counter
abstraction is a special kind of symmetry reduction where the properties to be
proved are irrelevant with the process identifiers. We prove that the probabilis-
tic verification based on the abstract DTMC model is still guaranteed to be
sound and complete. We focus on checking two important properties of the sys-
tem: convergence and convergence rate. We are able to automatically prove that
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the outcome is guaranteed to converge to an MDO when the agents adopt BSS
while the convergence property is lost in ESS. For ESS, with probabilistic model
checking we can also obtain the exact probability that the outcome deviates
from an MDO by checking the corresponding property. For the property of con-
vergence rate, the exact average number of rounds for the outcome to converge
to an MDO is automatically obtained. To show the effectiveness of the process
counter abstraction technique we propose, we also compare the state space and
verification time cost with the case without using abstraction. Overall, through
the analysis we are able to show that probabilistic model checking technique is
applicable, and indeed useful in analysing the properties of a multi-agent system
and providing additional insights into the system.

The remainder of the paper is organized as follows. Section 2 gives an overview
of related work. In Section 3, we first review the dispersion games and the strate-
gies, and then present how to reduce the state space using counter abstraction
technique and implement the model. In Section 4, we perform an extensive anal-
ysis of two important properties of the system based on the models we previously
construct. Lastly conclusion and future work are given in Section 5.

2 Related Work

Ballarini et al. [3] apply probabilistic model checking to automatically analyse
the uncertainty existing in a two-agent negotiation game. In the negotiation
game, there exist one seller and one buyer bargaining over a single item, and
both players exhibit probabilistic behaviors based on the opponent’s previous
behavior. They model the dynamics of the two-player system as a discrete-time
Markov chain (DTMC). They mainly illustrate how to use the probabilistic
model checker PRISM [12] to automatically analyse the probability that the
players reach an agreement within each round of the game. This property is
specified in probabilistic computation tree logic (PCTL) [10]. Their work is sim-
ilar to ours in that both work apply the probabilistic model checking technique
to automatically analyse the dynamics of a multi-agent system in a game-like
scenario. However, we study a complex scenario involving an arbitrary number
of players and actions, and we propose using the abstraction technique to reduce
the model’s state space.

Tadjouddine et al. [23] investigate the problem of automatically verifying
game-theoretical property of strategy-proofness for auction protocols. They con-
sider the case of Vickrey auction protocol and check the property of strategy-
proofness using the model checker SPIN [8]. To solve the state space explosion
problem, they apply two types of abstraction approaches to solve it, i.e., program
slicing technique and abstract interpretation. Program slicing is a technique to
remove portion of codes in the model which is irrelevant with respect to the
property checked. The basic idea behind abstract interpretation is to map the
original strategy domain onto an abstract and less complex domain, and then
perform model checking on the abstract model. By using these two abstrac-
tion methods, the authors show that strategy-proofness of Vickrey auction can
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be automatically verified in SPIN for any number of players. However, in their
work, there does not involve any probabilistic element within the protocol and
the agents’ behaviors, while the system we consider exhibits highly stochastic
behaviors.

Bordini et al. [5] review the problem of verifying multi-agent system imple-
mented in language AgentSpeak using model checking techniques. They aim at
automatically verifying whether certain specifications are satisfied using existing
model checkers. For this purpose, the original multi-agent system implemented
in a BDI language AgentSpeak [17] need to be transformed into the formal lan-
guage supported by current model checkers first. They introduce a variant of
language AgentSpeak, AgentSpeak(F), which can be automatically transformed
into Promela, the model specification language of SPIN [8]. They also describe
another approach based on the translation of the system in AgentSpeak into a
system in Java, which then can be checked by another model checker JPF [27].
Additionally, they adopt a simplified form of BDI logic to specify the proper-
ties to be checked, which can be transformed into LTL, supported by previous
model checkers. With the combination of these two techniques, the properties of
a multi-agent system implemented in AgentSpeak can be automatically checked
with existing model checkers. There also exists other similar work [26] that trans-
forms other agent-based languages such as Mable [26] into Promela and use SPIN
to perform model checking. However, in our work, the model is implemented di-
rectly in the modeling language supported by the model checker PAT, which
avoids the additional language transformation cost. Besides, probabilistic prop-
erty checking, which is important in analysing multi-agent system dynamics, is
not supported in their work.

3 Modeling Multi-agent Learning Dynamics in Dispersion
Games

We consider the multi-agent learning problem in the context of dispersion games
(DGs) [22]. Dispersion games are the generalization of anti-coordination games
to arbitrary number of players and actions. This class of games is particularly
important in that it can be applied to model a variety of practical applications
including load balancing problems [28] and niche selection in economics [4, 7].
Two novel strategies designed for dispersion games are studied here: basic simple
strategy (BSS) and extended simple strategy (ESS). Next we first give the detailed
description of dispersion games and the strategies. Following that, we will present
how to model the dynamics of these strategies and further reduce the state space
using counter abstraction techniques.

3.1 Dispersion Games and Strategies Definition

In the following, we assume that the readers are familiar with game theory nota-
tions used in [14]. Dispersion games (DGs) [22] generalize the anti-coordination
games by allowing arbitrary number of players and actions. In this class of games,
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the agents prefer the outcomes in which their action choices are as dispersed as
possible over all possible actions. Formally a N -player dispersion game is a tuple
〈N, (Ai), (ui)〉 where

– N = {1, 2, . . . , n} is the set of agents.
– Ai is the set of actions available to agent i.
– ui is the utility function of each agent i, where ui(O) corresponds to the

payoff agent i receives when the outcome O is achieved.

We assume that all agents have the same set of actions, that is, A1 = A2 = . . . =
An, and also the game is both agent symmetric and action symmetric. That is,
each agent’s utility over a particular outcome is only determined by the number
of agents choosing the same action as itself.

When the agents are interacting with one another in DG-like environments,
the most desirable outcomes would be the case that all agents’ action choices
are as dispersed as possible, from both individual agent’s and the overall sys-
tem’s perspectives. This kind of outcomes is called maximal dispersion outcomes
(MDOs) [22]. Formally, an MDO can be defined as follows.

Definition 1. Given a dispersion game, an outcome O = {a1, . . . , ai, . . . , an}
is maximal dispersion outcome iff for each agent i ∈ N and each outcome
O′ = {a1, . . . , a′i, . . . , an} such that ai 6= a′i, we have nOai

≤ nO
′

a′
i

. Here nOai
and

nO
′

a′
i

are the number of agents choosing action ai and a′i under outcome O and

O′ respectively.

The strategies we consider here are basic simple strategy (BSS) and extended
simple strategy (ESS). Basic simple strategy is a novel strategy for agents to make
decisions in repeated dispersion games proposed by Alpern [1]. This strategy is
specifically designed for the case when the number of agents n is equal to the
number of actions k(k = |Ai|). According to BSS, initially each agent i chooses a
random action. If no other agent chooses the same action, agent i will still choose
the same action next round. If there exist other agents choosing the same action,
agent i will randomly choose an action from the set A′ = {a′ ∈ Ai | nOa′ 6= 1} of
actions in the next round. Note that this strategy only requires that the agents
know which actions are chosen by only one agent in previous round.

Another strategy we consider is extended simple strategy, which extends BSS
for the general case when n 6= k. In each round t, each agent i chooses the same
action ai as previous round if nOt

ai
≤ bn/kc, where nOt

ai
is the number of agents

choosing ai in round t. Otherwise, agent i chooses action ai with probability
n/k

n
Ot
ai

and with probability 1 − n/k

n
Ot
ai

randomly chooses an action over the action

set {a′ ∈ Ai | nOt

a′ < dn/ke}.
Unlike BSS, ESS does not assign equal probability to those actions that

are not chosen by only one agent. For example, consider the case when there
are 4 agents and the action set A1 = A2 = . . . = A4 = {a1, a2, a3, a4}, and
the outcome in the current round t is Ot = {a1, a1, a2, a2}. In ESS, the agents
choosing action a1 in current round t will choose action a1 with probability 0.5
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and either action a3 or a4 with probability 0.25 in round t+ 1. In contrast, the
agents will randomly select one action to perform according to strategy BSS.

3.2 Modeling BSS and ESS in Dispersion Games Using Counter
Abstraction Technique

For both BSS and ESS, in each round, the agents simultaneously choose their ac-
tions in a probabilistic manner based on the outcome of the previous round. The
natural way of modeling the agents’ dynamics in dispersion games is to represent
each agent’s learning dynamics as a process. The overall system exhibits highly
stochastic behaviors and non-determinism because of the coexistence of multi-
ple probabilistic learners. However, since each agent makes its decision indepen-
dently each round, the concurrent behaviors among agents can be equivalently
modeled as a series of sequential behaviors. In this way, the non-determinism
in the system is eliminated and thus the system can be naturally modeled as a
discrete-time Markov chain (DTMC).

Definition 2. A discrete-time Markov chain is a tupleM = (S, P, linit, AP, L),
where

– S is a countable, non-empty set of global states,
– P : S×S → [0, 1] is the transition probability function such that for all states

s:
∑

s′∈S P (s, s′) = 1,
– linit is the initial distribution such that

∑
s∈S lint(s) = 1, and

– AP is a set of atomic propositions and L : S → 2AP a labeling function.

Each agent (process) i has its own local states si ∈ Ai, i.e., its strategy choice,
and each global state s = (v, 〈s1, . . . , sn〉) = (v,Oi), which is the combination
of the valuations of the global variables v 4 and the local states of all agents
(or the game outcome Oi). The transition relation P reflects the joint transi-
tion probability between different global states, which depends on the specific
probabilistic strategy adopted by the agents in the system and can be easily
calculated based on the strategy specifications in Section 3.1. Thus the DTMC
which models the dynamics of the system can be automatically constructed and
is uniquely determined. However, the major problem is that the state space of
the model can be arbitrarily large and thus hinder the efficiency of analysing
the model, due to the explosion of the combination of all agent processes’ local
states. For example, consider the case of n agents and k actions, without taking
the global variables into consideration, the number of possible combinations of
all agent processes’ local states is kn, which grows rapidly as the values of n and
k increase.

To address this problem, we adopt counter abstraction technique [16, 20] to
reduce the state space. If a system is composed of a large number of behaviorally
similar processes, we can abstract its state space by grouping the processes based

4 Here the global variables refer to all variables defined in the model apart from the
local variables (s1, . . . , sn) storing the action choices for each agent.
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on which local state they reside in. For example, suppose there are 3 behaviorally
similar processes residing in a system. Instead of saying “process 1 is in state s,
process 2 is in state t and process 3 is in state s”, we simply say “two processes
are in state s and one process is in state t”. In this way, the state space can
be reduced by exploiting a powerful state space symmetry. Since the agents
always adopt the same strategy (either BSS or ESS) in dispersion games, this
abstraction technique can be naturally applied here. Specifically we only need
to consider how many agents choose each action in each possible outcome, since
there is no need for us to distinguish the identities of agents. Accordingly, for
those outcomes in which the number of agents choosing each action is the same
but only the identities of the agents choosing the same action are different, they
belong to two different global states but now they can be merged as the same one.
For example, considering a dispersion game with 5 agents and 3 actions and two
possible global states s = (v, 〈a1, a1, a2, a2, a3〉) and s′ = (v, 〈a1, a2, a2, a3, a1〉).
We only need to keep track of the number of agents choosing each action, i.e., we
have f(a1) = 2, f(a2) = 2, f(a3) = 1, where f(a) records the number of agents
choosing action a, and thus the two original global states are reduced to a single
one (v, f).

Definition 3. Given a global state s = (v, 〈s1, . . . , sn〉), its corresponding ab-
stract global state sA is a pair (v, f) where v is the valuation of the global vari-
ables and f : A → N is a total function such that f(a) = m if and only if
m agents choose action a ∈ A. Here A is the set of actions of all agents, and
A = Ai,∀1 ≤ i ≤ n.

Accordingly, given a DTMC, by applying counter abstraction, its correspond-
ing abstract DTMC can be defined as follows.

Definition 4. An abstract discrete-time Markov chain is a tuple MA =
(SA, PA, lAinit, AP

A, LA), where

– SA is a countable, non-empty set of abstract global states,
– PA : SA × SA → [0, 1] is the transition probability function such that for all

states s :
∑

s′∈SA PA(s, s′) = 1,
– lAinit is the initial distribution such that

∑
s∈SA lAint(s) = 1, and

– APA is a set of atomic proposition and LA : SA → 2APA

a labeling function.

For each abstract state sAi ∈ MA, it may correspond to a set of orig-
inal states in M, which is denoted as maps(sAi ). The transition probability
between two abstract states sAi , sAj is constructed as follows, PA(sAi , s

A
j ) =∑

sj∈maps(sAj ) P (si, sj), si ∈ maps(sAi ). Note that we only need to calculate

PA(sAi , s
A
j ) based on any single state si which can be mapped to the abstract

state sAi , since each original state si mapping to sAi is symmetric to each other.
The set of atomic propositions APA corresponds to those atomic propositions
irrelevant with process identifiers, which are preserved after abstraction.

In this way, for the same case of n agents and k actions, if k = n, the
number of possible combinations of all action processes’ local states is reduced
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from nn to
(
2n−1
n−1

)
. If k is a small constant value with n varying, the maximum

number of possible combinations of all action processes’ local states is always
smaller than nk, which is polynomial in the number of agents n; while in the
original case without abstraction, it is exponential in the number of agents n.
This reduction is of significant value since it is usually the case that k � n is
true in practical DG-like scenarios such as load balancing problems. Besides,
essentially no information is lost during the abstraction and the model is still
accurate.

Theorem 1. Given a DTMC M and a property φ5, if property φ is irrelevant
with process identifiers, then the probabilities that property φ is satisfied in the
original model M and the abstract one are always the same, i.e., Pr (M |= φ) =
Pr (MA |= φ).

Proof. For simplicity, we assume there is only one initial state in the system. In
the following, we prove this theorem by proving that all paths in M , represented by
L, can be separated into different groups L1, L2,... satisfying that 1) Li∩Lj = φ
and 2) L1 ∪ L2 ∪ · · · = L, meanwhile 3) for every Li there exists a unique path
lAi in MA that they have the same probability of reaching target states, where φ
is true.

Assume lA1 = {sA0 , sA1 , ...sAn } is a path in MA and sn is a target state, then the
probability of this path satisfying the property φ is PA(sA0 , s

A
1 )×PA(sA1 , s

A
2 )×· · ·×

PA(sAn−1, s
A
n ). Now in M , L1 can be built as picking all paths {s0, s1, ...sn} in L

satisfying si ∈ maps(sAi ). Assume maps(sAi ) = {s0i , s1i , ...s
mi
i } and P (s0i−1, s

ki
i )

= pki
i−1. Then the sum of probability of L1 is∑
{p(l)|l ∈ L1} =

∑
k0∈[0,m0],k1∈[0,m1],··· ,kn∈[0,mn]

(
∏

i∈[0,n−1] P (ski
i , s

ki+1

i+1 ))

=
∑

k0∈[0,m0],k1∈[0,m1],··· ,kn∈[0,mn]
(
∏

i∈[0,n−1] P (s0i , s
ki+1

i+1 ))

=
∑

k0∈[0,m0],k1∈[0,m1],··· ,kn∈[0,mn]
(
∏

i∈[0,n−1] p
ki+1

i )

=
∏

i∈[0,n−1](
∑

ki∈[0,mi]
p
ki+1

i ) =
∏

i∈[0,n−1] P
A(sAi , s

A
i+1) = pA(lA1 )

Therefore, L1 and lA1 have the same probability of reaching maps(sAn ) and
sAn . Thus we get that for each path in MA, there is a group of paths in M which
have the same probability of reaching target states. Suppose there is a path l in
M that is not grouped in any Li, then there must be a state on l which does not
have a representative state in MA, which is conflict with the definition of MA,
therefore 3) is true. Because Li and Lj correspond to different paths in MA,
then 1) true, otherwise lAi = lAj which is impossible. Since no path in M does
not belong to any Li, then 2) is true. Therefore, the theorem holds.

Following previous analysis, we model each action instead of each agent as a
process in model implementation. Each action process’s behavior is determined
by the stochastic behaviors of all agents previously choosing it. The current local
state of each action (process) is represented by the number of agents currently

5 φ can be any formally defined property such as LTL or CTL formula.
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choosing it, which will be updated accordingly based on the stochastic behaviors
of the relevant agents. If there is a new agent choosing action ai, then the variable
recording the local state of action ai will be increased by 1. Each global state
of the system is determined by the local states of all the action processes (the
game outcome) together with all global variables. Fig. 1 shows the behaviors
of the model for ESS with |Ai| = 2 and any number of agents. In this model,
two processes, Action 1 and Action 2, are executing in parallel, and are also
synchronized at the end of each round. For each action process i, its current
local state is represented by the number ni of agents choosing it in the current
round. The execution path of each process is determined by its current local state
and the behaviors of the agents choosing it. Specifically, each process i repeatedly
checks whether there is any agent that takes action i in current round but has
not made its next round decision yet. If yes, the process proceeds by allowing
this agent to make its decision in the way as specified by ESS and makes update
accordingly; if not, the process waits, updates its local state and starts the next
round after the other process also finishes this round. The behaviors of the model
for BSS are similar and we omit it here.

Check each 

agent 

choosing A1

all finished not finished

Wait for 

action 2

Make 

decision

Action 1's state n1 <= Floor[n/k] otherwise

Update its 

state n'1 in 

next round

Stochastic 

choosing & 

update 

Check each 

agent 

choosing A2

not finished all finished

Make 

decision

Wait for 

action 1

otherwise Action 2's state n2 <= Floor[n/k]

Update each action’s local state

n1 = n'1
n2 = n'2

Action 1Action 2

Update its 

state n'2 in 

next round

Stochastic

choosing & 

update

Fig. 1. Finite state automaton of the model of ESS with |Ai| = 2

Besides, by using two sets of variables to record the local states of the ac-
tion processes (e.g, n1 and n′1 in Fig. 1), the behavior of each process does not
have any side effect on the behaviors of other processes. Therefore the updating
of each action process can be performed in a sequential way without involving
any non-determinism, and thus it is sufficient to model the system as DTMC
instead of MDP as previously mentioned. We implemented both models in PAT
[19, 21], which is an extensible model checking framework supporting simula-
tion and verification of concurrent, real-time and stochastic systems as well as
other domain-specific systems. The concrete PAT models for both strategies are
omitted here and the full versions can be found at [11].
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4 Analysis and Verifications

In this section, we present how we can analyse the performance of both strategies
BSS and ESS with probabilistic model checking. We mainly concentrate on the
following two properties: convergence and convergence rate.

Firstly, we are interested in checking the property of convergence of previous
strategies, i.e., whether the agents adopting the strategy are guaranteed to con-
verge to an MDO at last. This is an important property to analyse in dispersion
games and in the literature of learning in games as well [22, 1]. If the answer is
positive, it indicates that the strategy can let the agents to stabilize on the most
efficient outcome eventually. Previous work [22] has empirically shown that the
outcome converges to an MDO under both strategies. We automatically verify
this property using probabilistic model checking and we gain better understand-
ings than that only based on empirical evaluations. Secondly, we demonstrate an
analysis of the average number of rounds that the agents using previous strate-
gies take before converging to an MDO. This is an important metric in evaluating
the learning efficiency of different learning strategies in terms of converging to
an MDO.

Compared with the approximate results from simulation, the quantitative
analysis results obtained through model checking are exact since it is based on
exhaustive explorations of all possible paths of the system. We can gain better
insights of the dynamics of both strategies through verifying the above proper-
ties using probabilistic model checking. For example, previous results based on
simulation show that the agents always converge to an MDO under ESS, how-
ever, we find that the outcome may deviate depending on the relation between
the number of agents and actions. The next two sections describe the analysis
of these two important properties in details.

4.1 Convergence

We first consider the property whether the agents adopting the strategies BSS
and ESS are guaranteed to converge to an MDO. To verify this property, we can
check the probability that the system satisfies the LTL formula as follows:

Pr (System |= ♦� MDO); (1)

where System models the overall system and MDO represents the state when
the outcome is an MDO. The combination of ♦ and � operators captures the
meaning of convergence, i.e., the system will eventually reach the state MDO
and will always be in that state thereafter. Through verifying property 1, the
probability that the system converges to an MDO is obtained.

For the first strategy BSS, it is required that the number n of players is always
equal to the number of actions |Ai|. Due to the state space explosion with the
increase of problem size, we only consider three simple cases with n = 3, 4 and 5.
By automatically verifying the previous property, the model checker PAT returns
that the probability that the outcome converges to an MDO is 1 for all cases.
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For the second strategy ESS, the number of players can be different from the
number of actions. We consider the following cases here: the number of available
actions k = 2, 3, 4, and the number of players n varies from 2 to 10. Table 1
shows the convergence probability Pc(n, k) for all these cases by automatically
verifying property 1.

Table 1. Probability of Convergence to an MDO of ESS
Pc(n, k) n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

k=2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
k=3 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
k=4 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0

From Table 1, we can see that the strategy ESS cannot guarantee that the
outcome will always converge to an MDO, and it depends on the relation between
the number of agents and actions available to them. Specifically, for k = 2, 3, 4
and n = 1, ..., 10, the outcome is guaranteed to converge to an MDO when k ≥ n
or n mod k = 0, and the convergence property does not hold otherwise. Intu-
itively, the underlying reason is as follows: when n mod k 6= 0 and n > k, for
any MDO, there always exists an unstable action such that the agents choos-
ing this action would always have certain probability to choose other actions
next round. If all agents choose another action next round simultaneously, the
resulting outcome will not be an MDO any more.

For the cases when the convergence property is lost in ESS, it is interesting
and useful to consider the following property: if the outcome in round t is an
MDO, what is the expected probability that the outcome in next round t + 1
is not an MDO? For a given strategy, if this average probability of deviation
is very low, we can say that the outcome approximately converges to an MDO
under this strategy. To achieve this goal, we can check the probability that the
system satisfies the LTL formula as follows.

Pr (System |= !MDO U MDO X(m) !MDO); (2)

where System models the overall system; MDO and !MDO represent the states
when an MDO is achieved or not respectively. X(m) is a syntactic sugar reading
as “next m-th”, and U is a temporal logic operator which reads as “until”. The
formulae MDO X(m) !MDO means that the condition !MDO is satisfied for
the m-th state after the state which satisfies the condition MDO. By letting m
equal to the number of states within one round, the whole formulae represents
the condition that the outcome will deviate from MDO next round whenever
an MDO is reached 6. By checking property 2, we can automatically obtain the
exact probability that the above condition is satisfied. This property is verified

6 Here m is manually determined based on the generated simulation traces. We later
propose a modeling language PMA [18] specifically designed for modeling multi-
agent system so that the transitions between rounds can be identified automatically.
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for all previous cases that the convergence property is lost in ESS, and the results
are shown in Table 2.

Table 2. Probability of Deviation after reaching an MDO

Pc(n, k) n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

k=2 0.0625 0.0 0.0699 0.0 0.0746 0.0 0.0686 0.0
k=3 0.0 0.0725 0.125 0.0 0.0912 0.1368 0.0 0.092
k=4 0.0 0.0 0.122 0.1524 0.1583 0.0 0.1374 0.1573

In Table 2, the cases with value 0 indicate that the outcome will always
converge to an MDO, which is in accordance with previous results. For the
rest of cases that the convergence property is lost, the exact probability that
the outcome will deviate from an MDO is obtained. These results give us a
better understanding and more accurate prediction of the dynamics of the agents’
behaviors.

4.2 Convergence Rate

Next we consider analysing another important property of the strategies: the
convergence rate. For any strategy that has been proven to (approximately)
converge to desirable outcomes, the natural following up question would be how
fast the convergence could be. Here we illustrate how we can analyse this prop-
erty of both strategies using reward checking techniques.

To analyse the convergence rate of the strategy BSS, we calculate the average
number of rounds it takes for the outcome to converge to an MDO. Since we have
previously shown that the outcome will not deviate once an MDO is achieved in
BSS, it is equal to check the average number of rounds it takes for the outcome
to reach an MDO for the first time. For the strategy ESS, it does not always
guarantee the convergence to an MDO. For those cases that the convergence
property is lost, here we only check the average number of rounds it takes until
an MDO is reached for the first time.

This kind of property can be analysed using reward checking. Here we use
transition reward to calculate the average rewards from the initial state to an
MDO. Specifically, we set the reward of finishing each round is 1, and increase
the accumulated reward by one after each round. Using the iterative method in
[2], we can calculate the average rounds (rewards) from the initial state to an
MDO. The property can be expressed as follows.

R(System |= ♦MDO); (3)

where System models the system’s dynamics and MDO represents the condition
that an MDO is reached. Through checking the above property, the exact average
number of rounds the system takes to converge to an MDO can be obtained.



Title Suppressed Due to Excessive Length 13

Due to space constraint, we only provide the results for ESS in different cases,
shown in Table 3. For those cases that ESS guarantees the agents to converge to
MDO (denoted in black), we can see that the average number of rounds required
to converge to MDO is gradually increased when the number of agents n becomes
larger. This implies that the convergence rate is gradually decreased with the
increasing of the number of agents n. The intuitive reason is that the overall
system becomes more dynamic due to the increase in the number of stochastic
agents, thus making it more difficult for the agents to coordinate their actions.
Another interesting observation is that the average number of rounds before
convergence are always locally maximal (i.e., larger than that for both cases of
n − 1 and n + 1) for those cases when the condition n mod k = 0 is satisfied,
i.e., when the convergence property holds.

Table 3. Average Number of Rounds to Converge to (Reach) an MDO in ESS

R̄(n,k) n = 3 n = 4 n=5 n=6 n=7 n=8 n=9 n=10

k=2 1.33 2.44 1.55 2.69 1.70 2.87 1.81 3.00
k=3 2.63 1.48 2.11 3.20 1.81 2.45 3.52 2.04
k=4 2.15 3.08 1.58 2.15 2.90 3.73 2.04 2.59

By applying counter abstraction technique in our modeling process, both the
state space and the verification time cost are greatly reduced. To show this, here
we list the details of verification time cost and state space cost of checking the
convergence probability of ESS strategy in Table 4.7 We can see that our counter
abstraction approach can significantly reduce the state space and the verification
time, and more than half cases are not able to verify within a reasonable amount
of time without abstraction.

5 Conclusion and Future Work

In this paper, we proposed a novel way of analysing a multi-agent system using
probabilistic model checking techniques. We studied two specific strategies: basic
simple strategy and extended simple strategy in dispersion games, and demon-
strated how the dynamics of the agents under these strategies can be modeled
and proposed using abstraction techniques to reduce the model’s state space.
Better insights of the dynamics of these strategies were obtained compared with
previous empirical evaluations.

Analysing the dynamics of a multi-agent system using model checking tech-
niques has its unique advantages compared with both simulation and mathe-
matical analysis techniques. However, there are a number of issues left as future
work. First, The size of the state space of the model usually grows exponentially

7 Note that the unit of the verification time is second and ”-” means that the verifi-
cation takes more than 10 minutes.
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Table 4. The Number of States and Verification Time for Checking the Convergence
Probability of ESS with and without Abstraction

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

k=2 (state (with ab-
straction))

42 99 158 284 400 622 814 1159 1446

k=2 (state (without ab-
straction))

62 532 3482 35758 242602 - - - -

k=2 (time (with ab-
straction))

0.015 0.017 0.027 0.027 0.061 0.043 0.168 0.064 0.276

k=2 (time (without ab-
straction))

0.063 0.073 0.631 28.77 126.7 - - - -

k=3 (state (with ab-
straction))

99 349 1155 2413 3598 8009 13323 17614 32105

k=3 (state (without ab-
straction))

352 1985 38729 - - - - - -

k=3 (time (with ab-
straction))

0.021 0.035 0.065 0.117 0.421 0.457 0.556 5.376 1.492

k=3 (time (without ab-
straction))

0.093 0.196 35.51 - - - - - -

k=4 (state (with ab-
straction))

512 1885 3588 14478 34668 72848 103108 257861 462256

k=4 (state (without ab-
straction))

386 6662 148898 - - - - - -

k=4 (time (with ab-
straction))

0.049 0.069 0.266 1.171 1.938 3.683 37.09 20.77 27.951

k=4 (time (without ab-
straction))

0.127 0.709 32.58 - - - - - -

with the number of processes, which is known as the infamous state explosion
problem. Even though the abstraction technique we propose in this paper has
significantly reduced the state space, it still cannot handle the cases when the
model becomes too large. Thus more effective approaches are required to make
this technique more scalable and applicable for analysing larger scenarios. One
promising direction is to resort to statistical model checking [13] which can sup-
port efficient analysis of larger scenarios.

Second, in this paper, we only focus on two specific strategies in the context
of dispersion games under the assumption of agent and action symmetry, but
we do believe that we have identified an alternative approach that has great
potentials for automatic analysing multi-agent system dynamics. Thus another
natural direction is to consider relaxing the symmetric assumption and also
investigating other strategies in the multi-agent learning literature and how to
automatically analyse them using model checking techniques.
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